Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction

SUMMARY: In spite of being one of the most powerful anti-cancer drug, the nephrotoxicity of Vincristine (VCR) is not well established in either animals or humans. Hence, this study evaluates the nephrotoxic effect of VCR in rats after sub-chronic long-term administration. Rats were divided into 2 gr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Shati,Ali A
Lenguaje:English
Publicado: Sociedad Chilena de Anatomía 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022019000100273
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-95022019000100273
record_format dspace
spelling oai:scielo:S0717-950220190001002732019-09-11Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal TransductionShati,Ali A Vincristine Nephrotoxicity Oxidative stress Apoptosis Rats SUMMARY: In spite of being one of the most powerful anti-cancer drug, the nephrotoxicity of Vincristine (VCR) is not well established in either animals or humans. Hence, this study evaluates the nephrotoxic effect of VCR in rats after sub-chronic long-term administration. Rats were divided into 2 groups (n=10/group) of either control and VCR treated rats (50 mg/kg). Treatments were carried out for 30 consecutive days, after which a series of biochemical and molecular experiments related to kidney function were evaluated. VCR administration significantly decreased the survival rate (69.8 %) and impaired renal function as evidenced by lowered creatinine (Cr) clearance (Ccr), high serum levels of urea and Cr, increased urinary protein levels and resulted in sever cortex pathological alterations, including glomerulus congestion and damage as well as vascular degenerations up to necrosis of both proximal and distal convoluted tubules. Mechanistically, VCR lowered renal antioxidant potential and ATP levels, enhanced lipid peroxidation and induced inflammation. In addition, VCR induced activation of Raf-1-MEK1/2-ERK1/2 signaling pathway leading to downregulation of Bcl2 and upregulation of P53, Bax, and cleaved caspase-3. In conclusion, these findings show a nephrotoxic effect of VCR sulfate in rats after sub-chronic administration and such effect was mediated by activation of ERK1/2 induced apoptosis.info:eu-repo/semantics/openAccessSociedad Chilena de AnatomíaInternational Journal of Morphology v.37 n.1 20192019-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022019000100273en10.4067/S0717-95022019000100273
institution Scielo Chile
collection Scielo Chile
language English
topic Vincristine
Nephrotoxicity
Oxidative stress
Apoptosis
Rats
spellingShingle Vincristine
Nephrotoxicity
Oxidative stress
Apoptosis
Rats
Shati,Ali A
Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
description SUMMARY: In spite of being one of the most powerful anti-cancer drug, the nephrotoxicity of Vincristine (VCR) is not well established in either animals or humans. Hence, this study evaluates the nephrotoxic effect of VCR in rats after sub-chronic long-term administration. Rats were divided into 2 groups (n=10/group) of either control and VCR treated rats (50 mg/kg). Treatments were carried out for 30 consecutive days, after which a series of biochemical and molecular experiments related to kidney function were evaluated. VCR administration significantly decreased the survival rate (69.8 %) and impaired renal function as evidenced by lowered creatinine (Cr) clearance (Ccr), high serum levels of urea and Cr, increased urinary protein levels and resulted in sever cortex pathological alterations, including glomerulus congestion and damage as well as vascular degenerations up to necrosis of both proximal and distal convoluted tubules. Mechanistically, VCR lowered renal antioxidant potential and ATP levels, enhanced lipid peroxidation and induced inflammation. In addition, VCR induced activation of Raf-1-MEK1/2-ERK1/2 signaling pathway leading to downregulation of Bcl2 and upregulation of P53, Bax, and cleaved caspase-3. In conclusion, these findings show a nephrotoxic effect of VCR sulfate in rats after sub-chronic administration and such effect was mediated by activation of ERK1/2 induced apoptosis.
author Shati,Ali A
author_facet Shati,Ali A
author_sort Shati,Ali A
title Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
title_short Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
title_full Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
title_fullStr Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
title_full_unstemmed Sub-Chronic Administration of Vincristine Sulfate Induces Renal Damage and Apoptosis in Rats via Induction of Oxidative Stress and Activation of Raf1-MEK1/2-Erk1/2 Signal Transduction
title_sort sub-chronic administration of vincristine sulfate induces renal damage and apoptosis in rats via induction of oxidative stress and activation of raf1-mek1/2-erk1/2 signal transduction
publisher Sociedad Chilena de Anatomía
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022019000100273
work_keys_str_mv AT shatialia subchronicadministrationofvincristinesulfateinducesrenaldamageandapoptosisinratsviainductionofoxidativestressandactivationofraf1mek12erk12signaltransduction
_version_ 1718445090625552384