Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin

SUMMARY: Acetaminophen (also called paracetamol, or APAP) induced nephrotoxicity is reported after accidental or intentional ingestion of an overdose of the drug. Renal tubular ultrastructural alterations induced by APAP overdose associated with the induction of biomarkers of kidney injury have not...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Haidara,Mohamed A, Al-Ani,Bahjat, Eid,Refaat A, Mohammed,Muataz E. D, Al-Hashem,Fahaid, Dallak,Mohammad
Lenguaje:English
Publicado: Sociedad Chilena de Anatomía 2020
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022020000300585
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-95022020000300585
record_format dspace
spelling oai:scielo:S0717-950220200003005852020-04-07Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and QuercetinHaidara,Mohamed AAl-Ani,BahjatEid,Refaat AMohammed,Muataz E. DAl-Hashem,FahaidDallak,Mohammad Renal tubule ultrastructure Acetaminophen Resveratrol Quercetin Rat model SUMMARY: Acetaminophen (also called paracetamol, or APAP) induced nephrotoxicity is reported after accidental or intentional ingestion of an overdose of the drug. Renal tubular ultrastructural alterations induced by APAP overdose associated with the induction of biomarkers of kidney injury have not been investigated before. Also, we investigated whether the combined polyphenolic anti-inflammatory and antioxidants agents, resveratrol (RES) and quercetin (QUR) can protect against APAP-induced acute kidney injury. The model group of rats received a single dose of APAP (2 g/kg), whereas the protective group of rats was pre-treated for 7 days with combined doses of RES (30 mg/kg) and QUR (50 mg/kg) before being given a single dose of APAP. All rats were then sacrificed one day post APAP ingestion. Harvested kidney tissues were prepared for transmission electron microscopy (TEM) staining and blood samples were assayed for urea, creatinine, and biomarkers of inflammation and oxidative stress. TEM images and blood chemistry analysis showed that APAP overdose induced kidney damage as demonstrated by substantial alterations to the proximal convoluted tubule ultrastructure, and a significant (p<0.05) increase in urea, creatinine, tumor necrosis factor-alpha (TNF-a), and malondialdehyde (MDA) blood levels, which were protected by RES+QUR. These findings indicate that APAP induces alterations to the renal tubular ultrastructure, which is inhibited by resveratrol plus quercetin, which also decreases blood levels of kidney injury biomarkers.info:eu-repo/semantics/openAccessSociedad Chilena de AnatomíaInternational Journal of Morphology v.38 n.3 20202020-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022020000300585en10.4067/S0717-95022020000300585
institution Scielo Chile
collection Scielo Chile
language English
topic Renal tubule ultrastructure
Acetaminophen
Resveratrol
Quercetin
Rat model
spellingShingle Renal tubule ultrastructure
Acetaminophen
Resveratrol
Quercetin
Rat model
Haidara,Mohamed A
Al-Ani,Bahjat
Eid,Refaat A
Mohammed,Muataz E. D
Al-Hashem,Fahaid
Dallak,Mohammad
Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
description SUMMARY: Acetaminophen (also called paracetamol, or APAP) induced nephrotoxicity is reported after accidental or intentional ingestion of an overdose of the drug. Renal tubular ultrastructural alterations induced by APAP overdose associated with the induction of biomarkers of kidney injury have not been investigated before. Also, we investigated whether the combined polyphenolic anti-inflammatory and antioxidants agents, resveratrol (RES) and quercetin (QUR) can protect against APAP-induced acute kidney injury. The model group of rats received a single dose of APAP (2 g/kg), whereas the protective group of rats was pre-treated for 7 days with combined doses of RES (30 mg/kg) and QUR (50 mg/kg) before being given a single dose of APAP. All rats were then sacrificed one day post APAP ingestion. Harvested kidney tissues were prepared for transmission electron microscopy (TEM) staining and blood samples were assayed for urea, creatinine, and biomarkers of inflammation and oxidative stress. TEM images and blood chemistry analysis showed that APAP overdose induced kidney damage as demonstrated by substantial alterations to the proximal convoluted tubule ultrastructure, and a significant (p<0.05) increase in urea, creatinine, tumor necrosis factor-alpha (TNF-a), and malondialdehyde (MDA) blood levels, which were protected by RES+QUR. These findings indicate that APAP induces alterations to the renal tubular ultrastructure, which is inhibited by resveratrol plus quercetin, which also decreases blood levels of kidney injury biomarkers.
author Haidara,Mohamed A
Al-Ani,Bahjat
Eid,Refaat A
Mohammed,Muataz E. D
Al-Hashem,Fahaid
Dallak,Mohammad
author_facet Haidara,Mohamed A
Al-Ani,Bahjat
Eid,Refaat A
Mohammed,Muataz E. D
Al-Hashem,Fahaid
Dallak,Mohammad
author_sort Haidara,Mohamed A
title Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
title_short Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
title_full Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
title_fullStr Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
title_full_unstemmed Acetaminophen Induces Alterations to the Renal Tubular Ultrastructure in a Rat Model of Acute Nephrotoxicity Protected by Resveratrol and Quercetin
title_sort acetaminophen induces alterations to the renal tubular ultrastructure in a rat model of acute nephrotoxicity protected by resveratrol and quercetin
publisher Sociedad Chilena de Anatomía
publishDate 2020
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-95022020000300585
work_keys_str_mv AT haidaramohameda acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
AT alanibahjat acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
AT eidrefaata acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
AT mohammedmuatazed acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
AT alhashemfahaid acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
AT dallakmohammad acetaminopheninducesalterationstotherenaltubularultrastructureinaratmodelofacutenephrotoxicityprotectedbyresveratrolandquercetin
_version_ 1718445144417501184