PI INDEX OF SOME BENZENOID GRAPHS
The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑[neu(e|G)+ n ev(e|G)], where neu(e|G) is the number of edges of G lying closer to u than to v, n ev(e|G) is the number of edges of G lying closer to v than to u and summation goes over all edges of G. In this paper, we first...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad Chilena de Química
2006
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072006000300008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0717-97072006000300008 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0717-970720060003000082006-11-16PI INDEX OF SOME BENZENOID GRAPHSREZA ASHRAFI,ALILOGHMAN,AMIR Topological index PI index Benzenoid graph molecular graph The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑[neu(e|G)+ n ev(e|G)], where neu(e|G) is the number of edges of G lying closer to u than to v, n ev(e|G) is the number of edges of G lying closer to v than to u and summation goes over all edges of G. In this paper, we first compute the PI index of a class of pericondensed benzenoid graphs consisting of n rows, n ≤ 3, of hexagons of various lengths. Finally, we prove that for any connected graph G with exactly m edges, PI(G) ≤ m(m-1) with equality if and only if G is an acyclic graph or a cycle of odd lengthinfo:eu-repo/semantics/openAccessSociedad Chilena de QuímicaJournal of the Chilean Chemical Society v.51 n.3 20062006-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072006000300008en10.4067/S0717-97072006000300008 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Topological index PI index Benzenoid graph molecular graph |
spellingShingle |
Topological index PI index Benzenoid graph molecular graph REZA ASHRAFI,ALI LOGHMAN,AMIR PI INDEX OF SOME BENZENOID GRAPHS |
description |
The Padmakar-Ivan (PI) index of a graph G is defined as PI(G) = ∑[neu(e|G)+ n ev(e|G)], where neu(e|G) is the number of edges of G lying closer to u than to v, n ev(e|G) is the number of edges of G lying closer to v than to u and summation goes over all edges of G. In this paper, we first compute the PI index of a class of pericondensed benzenoid graphs consisting of n rows, n ≤ 3, of hexagons of various lengths. Finally, we prove that for any connected graph G with exactly m edges, PI(G) ≤ m(m-1) with equality if and only if G is an acyclic graph or a cycle of odd length |
author |
REZA ASHRAFI,ALI LOGHMAN,AMIR |
author_facet |
REZA ASHRAFI,ALI LOGHMAN,AMIR |
author_sort |
REZA ASHRAFI,ALI |
title |
PI INDEX OF SOME BENZENOID GRAPHS |
title_short |
PI INDEX OF SOME BENZENOID GRAPHS |
title_full |
PI INDEX OF SOME BENZENOID GRAPHS |
title_fullStr |
PI INDEX OF SOME BENZENOID GRAPHS |
title_full_unstemmed |
PI INDEX OF SOME BENZENOID GRAPHS |
title_sort |
pi index of some benzenoid graphs |
publisher |
Sociedad Chilena de Química |
publishDate |
2006 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072006000300008 |
work_keys_str_mv |
AT rezaashrafiali piindexofsomebenzenoidgraphs AT loghmanamir piindexofsomebenzenoidgraphs |
_version_ |
1718445363782746112 |