THEORETICAL STUDY OF THE MECHANISM OF CYCLOADDITION REACTION BETWEEN DICHLORO-SILYLENE CARBENE(CL2SI=C:) AND ACETONE

The mechanism of the cycloaddition reaction between singlet dichloro-silylene carbene and acetone has been investigated with DFT, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: LU,XIUHUI, XIANG,PINGPING, SHI,LEYI  , HAN,JUNFENG, LIAN,ZHENXIA
Lenguaje:English
Publicado: Sociedad Chilena de Química 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072010000300014
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The mechanism of the cycloaddition reaction between singlet dichloro-silylene carbene and acetone has been investigated with DFT, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//B3LYP/6-31G* method. From the potential energy profile, it can be predicted that the reaction has two competitive dominant reaction pathways. The channel (I) consists of two steps: (1) the two reactants firstly form a four-membered ring intermediate through a barrier-free exothermic reaction of 307.1 kJ/mol; (2) four-membered ring intermediate then isomerizes to a CH3-transfer product via a transition state with energy barrier of 11.3 kJ/mol. The process of channel (II) is as following: on the basis of four-membered ring intermediate created between the two reactants, four-membered ring intermediate further reacts with acetone to form the intermediate through a barrier-free exothermic reaction of 165.8 kJ/mol; Then, intermediate isomerizes to a silicic bis-heterocyclic product via a transition state, for which the barrier is 57.6 kJ/mol.