SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS

Recently, the support vector machine (SVM), as a novel type of learning machine, has been introduced to solve chemical problems. In this study, å- support vector regression (å-SVR) and v-support vector regression (v-SVR) were, respectively, used to construct quantitative structure-property relations...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: YU,XINLIANG, WANG,XUEYE, CHEN,JIANFANG
Lenguaje:English
Publicado: Sociedad Chilena de Química 2011
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072011000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-97072011000300006
record_format dspace
spelling oai:scielo:S0717-970720110003000062012-01-11SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERSYU,XINLIANGWANG,XUEYECHEN,JIANFANG free-radical copolymerizations Q-e scheme quantum chemical descriptors structure-property relations support vector machine Recently, the support vector machine (SVM), as a novel type of learning machine, has been introduced to solve chemical problems. In this study, å- support vector regression (å-SVR) and v-support vector regression (v-SVR) were, respectively, used to construct quantitative structure-property relationship (QSPR) models of Q and e parameters in the Q-e scheme, which is remarkably useful in the interpretation of the reactivity of a monomer in free-radical copolymerizations. The quantum chemical descriptors used to developed the SVR models were calculated from styrene and radicals with structures CH3CH2C¹H2-C²HR³· (C¹H2=C²HR³ + CH3CH2· - CH3CH2C¹H2-C²HR³·). The optimum å-SVR model of lnQ (C= 9, å =0.05 and ã =0.2) and the optimum v-SVR model of e (C=100, v = 0.5 and ã =0.4) produced low root mean square (rms) errors for prediction sets: 0.318 and 0.266, respectively. Thus, applying SVR to predict parameters Q and e is successful.info:eu-repo/semantics/openAccessSociedad Chilena de QuímicaJournal of the Chilean Chemical Society v.56 n.3 20112011-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072011000300006en10.4067/S0717-97072011000300006
institution Scielo Chile
collection Scielo Chile
language English
topic free-radical copolymerizations
Q-e scheme
quantum chemical descriptors
structure-property relations
support vector machine
spellingShingle free-radical copolymerizations
Q-e scheme
quantum chemical descriptors
structure-property relations
support vector machine
YU,XINLIANG
WANG,XUEYE
CHEN,JIANFANG
SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
description Recently, the support vector machine (SVM), as a novel type of learning machine, has been introduced to solve chemical problems. In this study, å- support vector regression (å-SVR) and v-support vector regression (v-SVR) were, respectively, used to construct quantitative structure-property relationship (QSPR) models of Q and e parameters in the Q-e scheme, which is remarkably useful in the interpretation of the reactivity of a monomer in free-radical copolymerizations. The quantum chemical descriptors used to developed the SVR models were calculated from styrene and radicals with structures CH3CH2C¹H2-C²HR³· (C¹H2=C²HR³ + CH3CH2· - CH3CH2C¹H2-C²HR³·). The optimum å-SVR model of lnQ (C= 9, å =0.05 and ã =0.2) and the optimum v-SVR model of e (C=100, v = 0.5 and ã =0.4) produced low root mean square (rms) errors for prediction sets: 0.318 and 0.266, respectively. Thus, applying SVR to predict parameters Q and e is successful.
author YU,XINLIANG
WANG,XUEYE
CHEN,JIANFANG
author_facet YU,XINLIANG
WANG,XUEYE
CHEN,JIANFANG
author_sort YU,XINLIANG
title SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
title_short SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
title_full SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
title_fullStr SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
title_full_unstemmed SUPPORT VECTOR MACHINE REGRESSION FOR REACTIVITY PARAMETERS OF VINYL MONOMERS
title_sort support vector machine regression for reactivity parameters of vinyl monomers
publisher Sociedad Chilena de Química
publishDate 2011
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072011000300006
work_keys_str_mv AT yuxinliang supportvectormachineregressionforreactivityparametersofvinylmonomers
AT wangxueye supportvectormachineregressionforreactivityparametersofvinylmonomers
AT chenjianfang supportvectormachineregressionforreactivityparametersofvinylmonomers
_version_ 1718445449864544256