DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION
In this study, a novel method using displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop in complicated samples prior to flame atomic absorption spectrometry determination was developed. This method involves two consecutive dispersive liquid-liquid m...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad Chilena de Química
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000100020 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0717-97072013000100020 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0717-970720130001000202014-09-09DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATIONAFZALI,DARYOUSHFAYAZI,MARYAMFAVI,ALIMOSTA Displacement extraction Lead determination Microextraction Preconcentration In this study, a novel method using displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop in complicated samples prior to flame atomic absorption spectrometry determination was developed. This method involves two consecutive dispersive liquid-liquid microextraction based on solidification. In step I, Zn(II) ions reacted with ammonium pyrrolidine dithio carbamate (APDC) to form Zn-APDC complex and was extracted with the solidified floating organic drop microextraction procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In step II, after centrifugation and solidification, the separated drop was dissolved in dimethylformamide (DMF) and then dispersed into the sample solution containing lead ion and another dispersive liquid-liquid microextraction based on solidification procedure was carried out. Due to the greater stability of Pb-APDC, Pb displaces Zn from the pre-extracted Zn-APDC and preconcentration of Pb was achieved. Under the optimized conditions, the calibration curve was linear in the range of 4-700 ng mL-1 with detection limit of 0.7 ng mL-1(3a b). The relative standard deviation of ±1.6% was obtained (n=7) and the enrichment factor was found to be 35.0.info:eu-repo/semantics/openAccessSociedad Chilena de QuímicaJournal of the Chilean Chemical Society v.58 n.1 20132013-03-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000100020en10.4067/S0717-97072013000100020 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Displacement extraction Lead determination Microextraction Preconcentration |
spellingShingle |
Displacement extraction Lead determination Microextraction Preconcentration AFZALI,DARYOUSH FAYAZI,MARYAM FAVI,ALIMOSTA DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
description |
In this study, a novel method using displacement-dispersive liquid-liquid microextraction based on solidification of floating organic drop in complicated samples prior to flame atomic absorption spectrometry determination was developed. This method involves two consecutive dispersive liquid-liquid microextraction based on solidification. In step I, Zn(II) ions reacted with ammonium pyrrolidine dithio carbamate (APDC) to form Zn-APDC complex and was extracted with the solidified floating organic drop microextraction procedure using 1-undecanol (extraction solvent) and ethanol (dispersive solvent). In step II, after centrifugation and solidification, the separated drop was dissolved in dimethylformamide (DMF) and then dispersed into the sample solution containing lead ion and another dispersive liquid-liquid microextraction based on solidification procedure was carried out. Due to the greater stability of Pb-APDC, Pb displaces Zn from the pre-extracted Zn-APDC and preconcentration of Pb was achieved. Under the optimized conditions, the calibration curve was linear in the range of 4-700 ng mL-1 with detection limit of 0.7 ng mL-1(3a b). The relative standard deviation of ±1.6% was obtained (n=7) and the enrichment factor was found to be 35.0. |
author |
AFZALI,DARYOUSH FAYAZI,MARYAM FAVI,ALIMOSTA |
author_facet |
AFZALI,DARYOUSH FAYAZI,MARYAM FAVI,ALIMOSTA |
author_sort |
AFZALI,DARYOUSH |
title |
DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
title_short |
DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
title_full |
DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
title_fullStr |
DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
title_full_unstemmed |
DISPLACEMENT-DISPERSIVE LIQUID-LIQUID MICROEXTRACTION BASED ON SOLIDIFICATION FLOATING ORGANIC DROP TRACE AMOUNTS OF LEAD IN WATER SAMPLE PRIOR TO FLAME ATOMIC ABSORPTION SPECTROMETRY DETERMINATION |
title_sort |
displacement-dispersive liquid-liquid microextraction based on solidification floating organic drop trace amounts of lead in water sample prior to flame atomic absorption spectrometry determination |
publisher |
Sociedad Chilena de Química |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000100020 |
work_keys_str_mv |
AT afzalidaryoush displacementdispersiveliquidliquidmicroextractionbasedonsolidificationfloatingorganicdroptraceamountsofleadinwatersamplepriortoflameatomicabsorptionspectrometrydetermination AT fayazimaryam displacementdispersiveliquidliquidmicroextractionbasedonsolidificationfloatingorganicdroptraceamountsofleadinwatersamplepriortoflameatomicabsorptionspectrometrydetermination AT favialimosta displacementdispersiveliquidliquidmicroextractionbasedonsolidificationfloatingorganicdroptraceamountsofleadinwatersamplepriortoflameatomicabsorptionspectrometrydetermination |
_version_ |
1718445482371448832 |