SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE)
Amphiphilic block copolymers of poly(methyl methacrylate) PMMA and poly(2-hidroxyethyl methacrylate) PHEMA were synthesized by a two-step atom transfer radical polymerization (ATRP). Copolymers with various degrees of polymerization and different relative block sizes were obtained. The structure of...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad Chilena de Química
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000400030 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0717-97072013000400030 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0717-970720130004000302014-09-02SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE)ACEVEDO,BMARTINEZ,FOLEA,A. F Block copolymers glass transition temperature thermogravimetric analysis critical micelle concentration fluorescence probing methods Amphiphilic block copolymers of poly(methyl methacrylate) PMMA and poly(2-hidroxyethyl methacrylate) PHEMA were synthesized by a two-step atom transfer radical polymerization (ATRP). Copolymers with various degrees of polymerization and different relative block sizes were obtained. The structure of the resulting polymers have been characterized and verified by FT-IR and ¹H-NMR, molecular weight were determined by size exclusion chromatography analyses. The thermal properties of these polymers were investigated by differential scanning calorimetry DSC and thermogravimetric analysis TGA. The glass transition temperature of mono halogenated PMMA increases from 116 °C to 123 °C with increasing molecular weight, whereas the glass transition temperature of block copolymers depends slightly on polymer structure. The derivatives of TGA curves indicate that thermal degradation occurs in one stage. The self-assembly of PMMA-b-PHEMA in aqueous solution have been investigated by fluorescence probing methods. The critical micelle concentrations are in the range 10-6 - 10-7 M. The micropolarity sensed by pyrene is higher than in aggregates formed by block copolymers based on polystyrene.info:eu-repo/semantics/openAccessSociedad Chilena de QuímicaJournal of the Chilean Chemical Society v.58 n.4 20132013-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000400030en10.4067/S0717-97072013000400030 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Block copolymers glass transition temperature thermogravimetric analysis critical micelle concentration fluorescence probing methods |
spellingShingle |
Block copolymers glass transition temperature thermogravimetric analysis critical micelle concentration fluorescence probing methods ACEVEDO,B MARTINEZ,F OLEA,A. F SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
description |
Amphiphilic block copolymers of poly(methyl methacrylate) PMMA and poly(2-hidroxyethyl methacrylate) PHEMA were synthesized by a two-step atom transfer radical polymerization (ATRP). Copolymers with various degrees of polymerization and different relative block sizes were obtained. The structure of the resulting polymers have been characterized and verified by FT-IR and ¹H-NMR, molecular weight were determined by size exclusion chromatography analyses. The thermal properties of these polymers were investigated by differential scanning calorimetry DSC and thermogravimetric analysis TGA. The glass transition temperature of mono halogenated PMMA increases from 116 °C to 123 °C with increasing molecular weight, whereas the glass transition temperature of block copolymers depends slightly on polymer structure. The derivatives of TGA curves indicate that thermal degradation occurs in one stage. The self-assembly of PMMA-b-PHEMA in aqueous solution have been investigated by fluorescence probing methods. The critical micelle concentrations are in the range 10-6 - 10-7 M. The micropolarity sensed by pyrene is higher than in aggregates formed by block copolymers based on polystyrene. |
author |
ACEVEDO,B MARTINEZ,F OLEA,A. F |
author_facet |
ACEVEDO,B MARTINEZ,F OLEA,A. F |
author_sort |
ACEVEDO,B |
title |
SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
title_short |
SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
title_full |
SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
title_fullStr |
SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
title_full_unstemmed |
SYNTHESIS, THERMAL BEHAVIOR, AND AGGREGATION IN AQUEOUS SOLUTION OF POLY(METHYL METHACRYLATE)-B-POLY(2-HYDROXYETHYL METHACRYLATE) |
title_sort |
synthesis, thermal behavior, and aggregation in aqueous solution of poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate) |
publisher |
Sociedad Chilena de Química |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072013000400030 |
work_keys_str_mv |
AT acevedob synthesisthermalbehaviorandaggregationinaqueoussolutionofpolymethylmethacrylatebpoly2hydroxyethylmethacrylate AT martinezf synthesisthermalbehaviorandaggregationinaqueoussolutionofpolymethylmethacrylatebpoly2hydroxyethylmethacrylate AT oleaaf synthesisthermalbehaviorandaggregationinaqueoussolutionofpolymethylmethacrylatebpoly2hydroxyethylmethacrylate |
_version_ |
1718445501588701184 |