SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS

Crystalline silicon solar cells are currently the leading technology in the photovoltaic market with no great expectable change in the shares. The scientific community works on the further development and improvements of state-of-the-art as well as new solar cell materials. This paper reports on a c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: FERRADA,P, PORTILLO,C, CABRERA,E, KOPECEK,R, PONCEBUSTOS,M, KOGAN,M. J, DEL CAMPO,V, FUENTEALBA,E
Lenguaje:English
Publicado: Sociedad Chilena de Química 2015
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072015000200009
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0717-97072015000200009
record_format dspace
spelling oai:scielo:S0717-970720150002000092019-10-08SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLSFERRADA,PPORTILLO,CCABRERA,EKOPECEK,RPONCEBUSTOS,MKOGAN,M. JDEL CAMPO,VFUENTEALBA,E Selective Etching Crystalline Solar Cells Screen Printing Thick Film Silver Paste Scanning Electron Microscopy Energy Dispersive X-Ray Spectrometry Crystalline silicon solar cells are currently the leading technology in the photovoltaic market with no great expectable change in the shares. The scientific community works on the further development and improvements of state-of-the-art as well as new solar cell materials. This paper reports on a chemical methodology for selective etching to study the metallization step in monocrystalline silicon solar cells. The object of study is a complete processed silicon solar cell which was cleaved via laser beam on the back side and broken per hand to obtain stripes of the size 15.6×1 cm². In the following a sequence of etching chemical solutions to selectively remove the components of the front side silver contact was applied. Scanning electron microscopy was used to investigate contact interface after each etching step. The silver finger, the glass and the silver crystallites grown in silicon could be removed. It came out that the silver crystallites preferably grow at the pyramid tips and edges of the textured wafer. A characterization with Energy Dispersive X-Ray Spectrometry was performed to quantify the components of the silver contact after each chemical etching step. While the weight percentage of silver reduced by more than 90% after an aqua regia treatment, it increased by 13% after hydrofluoric acid. Silver was practically eliminated after a second aqua regia bath. Similarly, the content of glass was also determined. The approach serves for interface investigations in semiconductor technology where screen printing approaches are used for the metallization.info:eu-repo/semantics/openAccessSociedad Chilena de QuímicaJournal of the Chilean Chemical Society v.60 n.2 20152015-06-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072015000200009en10.4067/S0717-97072015000200009
institution Scielo Chile
collection Scielo Chile
language English
topic Selective Etching
Crystalline Solar Cells
Screen Printing
Thick Film Silver Paste
Scanning Electron Microscopy
Energy Dispersive X-Ray Spectrometry
spellingShingle Selective Etching
Crystalline Solar Cells
Screen Printing
Thick Film Silver Paste
Scanning Electron Microscopy
Energy Dispersive X-Ray Spectrometry
FERRADA,P
PORTILLO,C
CABRERA,E
KOPECEK,R
PONCEBUSTOS,M
KOGAN,M. J
DEL CAMPO,V
FUENTEALBA,E
SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
description Crystalline silicon solar cells are currently the leading technology in the photovoltaic market with no great expectable change in the shares. The scientific community works on the further development and improvements of state-of-the-art as well as new solar cell materials. This paper reports on a chemical methodology for selective etching to study the metallization step in monocrystalline silicon solar cells. The object of study is a complete processed silicon solar cell which was cleaved via laser beam on the back side and broken per hand to obtain stripes of the size 15.6×1 cm². In the following a sequence of etching chemical solutions to selectively remove the components of the front side silver contact was applied. Scanning electron microscopy was used to investigate contact interface after each etching step. The silver finger, the glass and the silver crystallites grown in silicon could be removed. It came out that the silver crystallites preferably grow at the pyramid tips and edges of the textured wafer. A characterization with Energy Dispersive X-Ray Spectrometry was performed to quantify the components of the silver contact after each chemical etching step. While the weight percentage of silver reduced by more than 90% after an aqua regia treatment, it increased by 13% after hydrofluoric acid. Silver was practically eliminated after a second aqua regia bath. Similarly, the content of glass was also determined. The approach serves for interface investigations in semiconductor technology where screen printing approaches are used for the metallization.
author FERRADA,P
PORTILLO,C
CABRERA,E
KOPECEK,R
PONCEBUSTOS,M
KOGAN,M. J
DEL CAMPO,V
FUENTEALBA,E
author_facet FERRADA,P
PORTILLO,C
CABRERA,E
KOPECEK,R
PONCEBUSTOS,M
KOGAN,M. J
DEL CAMPO,V
FUENTEALBA,E
author_sort FERRADA,P
title SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
title_short SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
title_full SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
title_fullStr SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
title_full_unstemmed SELECTIVE CHEMICAL ETCHING FOR STUDYING THE FRONT SIDE CONTACT IN THICK FILM SCREEN PRINTED CRYSTALLINE P-TYPE SILICON SOLAR CELLS
title_sort selective chemical etching for studying the front side contact in thick film screen printed crystalline p-type silicon solar cells
publisher Sociedad Chilena de Química
publishDate 2015
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0717-97072015000200009
work_keys_str_mv AT ferradap selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT portilloc selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT cabrerae selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT kopecekr selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT poncebustosm selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT koganmj selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT delcampov selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
AT fuentealbae selectivechemicaletchingforstudyingthefrontsidecontactinthickfilmscreenprintedcrystallineptypesiliconsolarcells
_version_ 1718445534598922240