Red Neuronal Creciente Usando Perturbación Simultánea
Este artículo propone una red neuronal de tipo perceptron multicapas (MLP) que optimiza tanto su matriz de pesos como el número de neuronas ocultas. Inicialmente el sistema propuesto usa un número reducido de neuronas ocultas, optimizándose la matriz de pesos mediante un algoritmo de perturbación si...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Centro de Información Tecnológica
2004
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642004000500008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Este artículo propone una red neuronal de tipo perceptron multicapas (MLP) que optimiza tanto su matriz de pesos como el número de neuronas ocultas. Inicialmente el sistema propuesto usa un número reducido de neuronas ocultas, optimizándose la matriz de pesos mediante un algoritmo de perturbación simultánea. Una vez que la red converge se analiza su funcionamiento y si este no es el esperado se agrega una neurona oculta. Este proceso se repite hasta obtener el funcionamiento deseado. Los resultados obtenidos muestran que el sistema propuesto presenta un funcionamiento muy similar al de un MLP convencional, cuando éste tiene un número óptimo de nodos en la capa oculta y disminuye la complejidad computacional durante la etapa de entrenamiento. |
---|