Sistema Bayesiano para la Predicción de la Diabetes
En este trabajo se propone un sistema de clasificación Bayesiano para la identificación temprana de la diabetes Mellitus con base en el análisis de algunas variables tales como número de embarazos, presión arterial diastólica, espesor cutáneo del tríceps, índice de masa corporal, herencia y edad. La...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Centro de Información Tecnológica
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642017000600017 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | En este trabajo se propone un sistema de clasificación Bayesiano para la identificación temprana de la diabetes Mellitus con base en el análisis de algunas variables tales como número de embarazos, presión arterial diastólica, espesor cutáneo del tríceps, índice de masa corporal, herencia y edad. La metodología propuesta define y entrena el sistema propuesto con base en muestras tomadas de pacientes diabéticos y no diabéticos. El sistema se validó con pacientes diferentes, manteniendo la misma proporción entre individuos diabéticos y no diabéticos. Finalmente, el número de aciertos y errores en la detección de esta enfermedad fue comparado contra un test especializado. Los resultados indican que, en el 87,69% de los casos, el clasificador bayesiano logra detectar correctamente esta enfermedad con base en las variables antes mencionadas. No obstante, cuando se agregó la variable "insulina en suero", el porcentaje aumentó al 98.46%. |
---|