Modelado y Predicción del Fenómeno El Niño en Piura, Perú mediante Redes Neuronales Artificiales usando Matlab

Resumen Se ha aplicado redes neuronales artificiales a los datos climáticos de precipitación, temperaturas superficiales de mar en diferentes zonas calificadas como Niño y la velocidad de los vientos alisios con el fin de modelar y predecir el fenómeno El Niño, con seis meses de anticipación a la pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiménez-Carrión,Miguel, Gutiérrez-Segura,Flabio, Celi-Pinzón,Jorge
Lenguaje:Spanish / Castilian
Publicado: Centro de Información Tecnológica 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07642018000400303
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Resumen Se ha aplicado redes neuronales artificiales a los datos climáticos de precipitación, temperaturas superficiales de mar en diferentes zonas calificadas como Niño y la velocidad de los vientos alisios con el fin de modelar y predecir el fenómeno El Niño, con seis meses de anticipación a la presencia del mismo. El estudio se realiza en Piura, Perú. Se realiza un análisis preliminar de la información para determinar el grado de correlación entre las variables, luego se ha diseñado el modelado en dos fases, la primera usa las redes neuronales para modelar las variables como series temporales y en la segunda fase se diseña una red neuronal usando MatLab para que simule el comportamiento de las precipitaciones en Piura. Los resultados del estudio muestran que las redes neuronales son una técnica altamente confiable para encontrar un patrón de comportamiento de las precipitaciones y luego para predecir el fenómeno alcanzando una tasa de acierto del 98.4% en la etapa de entrenamiento y de 100% en la predicción del primer semestre del año 2016.