Phloematic mobility of 10Boron in kiwifruit (Actinidia deliciosa) mixedshoots

Boron (B) is an essential micronutrient showing restricted mobility in plants, except in species that synthesize polyols. The ability of kiwifruit to mobilize B through phloem transport has not yet been confirmed, despite its ability to synthesize the polyol myo-inositol. This study examined kiwifru...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sotomayor,Carlos, Ruiz,Rafael, Muñoz,Luis
Lenguaje:English
Publicado: Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202012000300015
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Boron (B) is an essential micronutrient showing restricted mobility in plants, except in species that synthesize polyols. The ability of kiwifruit to mobilize B through phloem transport has not yet been confirmed, despite its ability to synthesize the polyol myo-inositol. This study examined kiwifruit plants in which boric acid enriched with the stable 10B isotope was applied to the distal leaves of mixed shoots with flowers. At 24, 72 and 144 h, both 10B-treated and un-treated leaves and flowers from treated shoots were sampled and subsequently analyzed via mass spectrometry to determine the resulting 11B/10B ratios. Control leaves and flowers showed a natural ratio, varying between 3.82 and 4.05. In contrast, the ratios in treated leaves were 1.57 at 24 h,h 2.06 at 72 h (both of which are significantly different from the control) and similar to the control again after 144 h, at 3.83h. In the flowers from shoots with treated leaves, the ratios were 1.31 at 24 h, h1.48 at 72 h (both different from the control) and 3.67 at 144 h (similar to the control). These results indicate that the B solution was absorbed through the leaves and then rapidly re-translocated to B-demanding sinks, such as flowers, within the first 72 h. This finding clearly indicates that kiwifruit can transport boron through the phloem, which is essential knowledge for the correction of leaf and flower B deficiencies through foliar applications.