Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes

C.H.W Souza, E. Mercante, V.H.R. Prudente and D.D.D. Justina. 2013. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 40(2): 419-428. Satellite imagery, in combination with remote sensing techniques, provides a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Souza,Carlos H. Wachholz de, Mercante,Erivelto, Prudente,Victor H. R., Justina,Diego D.D.
Lenguaje:English
Publicado: Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000200016
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-16202013000200016
record_format dspace
spelling oai:scielo:S0718-162020130002000162013-10-23Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classesSouza,Carlos H. Wachholz deMercante,EriveltoPrudente,Victor H. R.Justina,Diego D.D. Accuracy indices agricultural landscape classifiers remote sensing C.H.W Souza, E. Mercante, V.H.R. Prudente and D.D.D. Justina. 2013. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 40(2): 419-428. Satellite imagery, in combination with remote sensing techniques, provides a new opportunity for monitoring and assessing crops with lower cost and greater objectivity than traditional surveys. The present research employed Landsat 5/TM satellite imagery to identify the land cover classes in Cafelândia (Paraná, Brasil), a predominantly agricultural town. Five supervised classification methods (parallelepiped (PL), minimum distance (MND), Mahalanobis distance (MHD), maximum likelihood classifier (MLC) and spectral angle mapper (SAM)) were tested in this work. To assess the efficiency of the classifications, accuracy indices and error metrics obtained through total confusion matrices were used. The results indicated that the Mahalanobis and SAM methods generated the smallest errors for the four studied land use classes (soybean, corn, forest, and bare soil), with overall accuracy values of 88% and 86%, respectively, and kappa index values 0.83 and 0.80, respectively. The values of these methods for the applied metrics were 0.88 and 0.86 for the sensitivity index, 0.96 and 0.95 for the total specificity index and 0.84 and 0.81 for Matthews correlation coefficient, respectively. The different classification methods clearly exhibited large variations in their performance for land cover mapping. The use of measures obtained from the error matrix is a suitable method for comparisons of thematic maps.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería ForestalCiencia e investigación agraria v.40 n.2 20132013-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000200016en10.4067/S0718-16202013000200016
institution Scielo Chile
collection Scielo Chile
language English
topic Accuracy indices
agricultural landscape
classifiers
remote sensing
spellingShingle Accuracy indices
agricultural landscape
classifiers
remote sensing
Souza,Carlos H. Wachholz de
Mercante,Erivelto
Prudente,Victor H. R.
Justina,Diego D.D.
Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
description C.H.W Souza, E. Mercante, V.H.R. Prudente and D.D.D. Justina. 2013. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 40(2): 419-428. Satellite imagery, in combination with remote sensing techniques, provides a new opportunity for monitoring and assessing crops with lower cost and greater objectivity than traditional surveys. The present research employed Landsat 5/TM satellite imagery to identify the land cover classes in Cafelândia (Paraná, Brasil), a predominantly agricultural town. Five supervised classification methods (parallelepiped (PL), minimum distance (MND), Mahalanobis distance (MHD), maximum likelihood classifier (MLC) and spectral angle mapper (SAM)) were tested in this work. To assess the efficiency of the classifications, accuracy indices and error metrics obtained through total confusion matrices were used. The results indicated that the Mahalanobis and SAM methods generated the smallest errors for the four studied land use classes (soybean, corn, forest, and bare soil), with overall accuracy values of 88% and 86%, respectively, and kappa index values 0.83 and 0.80, respectively. The values of these methods for the applied metrics were 0.88 and 0.86 for the sensitivity index, 0.96 and 0.95 for the total specificity index and 0.84 and 0.81 for Matthews correlation coefficient, respectively. The different classification methods clearly exhibited large variations in their performance for land cover mapping. The use of measures obtained from the error matrix is a suitable method for comparisons of thematic maps.
author Souza,Carlos H. Wachholz de
Mercante,Erivelto
Prudente,Victor H. R.
Justina,Diego D.D.
author_facet Souza,Carlos H. Wachholz de
Mercante,Erivelto
Prudente,Victor H. R.
Justina,Diego D.D.
author_sort Souza,Carlos H. Wachholz de
title Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
title_short Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
title_full Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
title_fullStr Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
title_full_unstemmed Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
title_sort methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
publisher Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000200016
work_keys_str_mv AT souzacarloshwachholzde methodsofperformanceevaluationforthesupervisedclassificationofsatelliteimageryindetermininglandcoverclasses
AT mercanteerivelto methodsofperformanceevaluationforthesupervisedclassificationofsatelliteimageryindetermininglandcoverclasses
AT prudentevictorhr methodsofperformanceevaluationforthesupervisedclassificationofsatelliteimageryindetermininglandcoverclasses
AT justinadiegodd methodsofperformanceevaluationforthesupervisedclassificationofsatelliteimageryindetermininglandcoverclasses
_version_ 1714202150776602624