Local influence when fitting Gaussian spatial linear models: an agriculture application
D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is diffe...
Guardado en:
Autores principales: | , , , |
---|---|
Lenguaje: | English |
Publicado: |
Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-16202013000300006 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-162020130003000062014-09-08Local influence when fitting Gaussian spatial linear models: an agriculture applicationGrzegozewski,Denise MUribe-Opaz,Miguel ADe Bastiani,FernandaGalea,Manuel Geostatistical influence diagnostics maximum likelihood outliers spatial variability D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería ForestalCiencia e investigación agraria v.40 n.3 20132013-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006en10.4067/S0718-16202013000300006 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Geostatistical influence diagnostics maximum likelihood outliers spatial variability |
spellingShingle |
Geostatistical influence diagnostics maximum likelihood outliers spatial variability Grzegozewski,Denise M Uribe-Opaz,Miguel A De Bastiani,Fernanda Galea,Manuel Local influence when fitting Gaussian spatial linear models: an agriculture application |
description |
D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment. |
author |
Grzegozewski,Denise M Uribe-Opaz,Miguel A De Bastiani,Fernanda Galea,Manuel |
author_facet |
Grzegozewski,Denise M Uribe-Opaz,Miguel A De Bastiani,Fernanda Galea,Manuel |
author_sort |
Grzegozewski,Denise M |
title |
Local influence when fitting Gaussian spatial linear models: an agriculture application |
title_short |
Local influence when fitting Gaussian spatial linear models: an agriculture application |
title_full |
Local influence when fitting Gaussian spatial linear models: an agriculture application |
title_fullStr |
Local influence when fitting Gaussian spatial linear models: an agriculture application |
title_full_unstemmed |
Local influence when fitting Gaussian spatial linear models: an agriculture application |
title_sort |
local influence when fitting gaussian spatial linear models: an agriculture application |
publisher |
Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006 |
work_keys_str_mv |
AT grzegozewskidenisem localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication AT uribeopazmiguela localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication AT debastianifernanda localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication AT galeamanuel localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication |
_version_ |
1714202151949959168 |