Local influence when fitting Gaussian spatial linear models: an agriculture application

D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is diffe...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Grzegozewski,Denise M, Uribe-Opaz,Miguel A, De Bastiani,Fernanda, Galea,Manuel
Lenguaje:English
Publicado: Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-16202013000300006
record_format dspace
spelling oai:scielo:S0718-162020130003000062014-09-08Local influence when fitting Gaussian spatial linear models: an agriculture applicationGrzegozewski,Denise MUribe-Opaz,Miguel ADe Bastiani,FernandaGalea,Manuel Geostatistical influence diagnostics maximum likelihood outliers spatial variability D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment.info:eu-repo/semantics/openAccessPontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería ForestalCiencia e investigación agraria v.40 n.3 20132013-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006en10.4067/S0718-16202013000300006
institution Scielo Chile
collection Scielo Chile
language English
topic Geostatistical
influence diagnostics
maximum likelihood
outliers
spatial variability
spellingShingle Geostatistical
influence diagnostics
maximum likelihood
outliers
spatial variability
Grzegozewski,Denise M
Uribe-Opaz,Miguel A
De Bastiani,Fernanda
Galea,Manuel
Local influence when fitting Gaussian spatial linear models: an agriculture application
description D.M. Grzegozewski, M.A. Uribe-Opazo, F. De Bastiani, and M. Galea. 2013. Local influence when fitting Gaussian spatial linear models: an agriculture application. Cien. Inv. Agr. 40(3): 523-535. Outliers can adversely affect how data fit into a model. Obviously, an analysis of dependent data is different from that of independent data. In the latter, i.e., in cases involving spatial data, local outliers can differ from the data in the neighborhood. In this article, we used the local influence technique to identify influential points in the response variables using two different schemes of perturbations. We applied this technique to soil chemical properties and soybean yield. We evaluated the effects of the influential points on the spatial model selection, the parameter estimation by maximum likelihood and the construction of thematic maps by kriging. In the construction of the thematic maps in studies with and without the influential points, there were changes in the levels of nutrients, allowing for the appropriate application of input, generating greater savings for the producer and contributing to the protection of the environment.
author Grzegozewski,Denise M
Uribe-Opaz,Miguel A
De Bastiani,Fernanda
Galea,Manuel
author_facet Grzegozewski,Denise M
Uribe-Opaz,Miguel A
De Bastiani,Fernanda
Galea,Manuel
author_sort Grzegozewski,Denise M
title Local influence when fitting Gaussian spatial linear models: an agriculture application
title_short Local influence when fitting Gaussian spatial linear models: an agriculture application
title_full Local influence when fitting Gaussian spatial linear models: an agriculture application
title_fullStr Local influence when fitting Gaussian spatial linear models: an agriculture application
title_full_unstemmed Local influence when fitting Gaussian spatial linear models: an agriculture application
title_sort local influence when fitting gaussian spatial linear models: an agriculture application
publisher Pontificia Universidad Católica de Chile. Facultad de Agronomía e Ingeniería Forestal
publishDate 2013
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-16202013000300006
work_keys_str_mv AT grzegozewskidenisem localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication
AT uribeopazmiguela localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication
AT debastianifernanda localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication
AT galeamanuel localinfluencewhenfittinggaussianspatiallinearmodelsanagricultureapplication
_version_ 1714202151949959168