Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa

This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods widely used for building construction: frake (Terminalia superba), lotofa (Sterculia rhinopetala), sapele (Entandrophragma cylindricum) and ayous (Triplochiton scleroxyl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Simo-Tagne,Merlin, Rémond,Romain, Rogaume,Yann, Zoulalian,André, Perré,Patrick
Lenguaje:English
Publicado: Universidad del Bío-Bío 2016
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2016000100020
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-221X2016000100020
record_format dspace
spelling oai:scielo:S0718-221X20160001000202016-03-30Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, LotofaSimo-Tagne,MerlinRémond,RomainRogaume,YannZoulalian,AndréPerré,Patrick Air permeability Central Africa diffusion coefficient sorption isotherm tropical woods This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods widely used for building construction: frake (Terminalia superba), lotofa (Sterculia rhinopetala), sapele (Entandrophragma cylindricum) and ayous (Triplochiton scleroxylon). Characterization of these four species in particular and Central Africa tropical woods in general were necessary to develop conservation and treatment of wood after first transformation using the drying. Also, moisture transport on wooden material used such as wall buildings can be facilitating to found the thermal comfort. Measurements of isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C with air relative humidity ranged from 0% to 90%. Mass diffusivity was determined in steady state using a specific vaporimeter. Air permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties were determined in the tangential direction with a "false" quartersawn board (sapele and lotofa) and in the radial direction with a flatsawn board (ayous and frake). Samples of sapele, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was quite low. We observed also a low difference between the sorption behavior of these different species and hysteresis of sorption decreases when temperature increases. Hailwood-Horrobin model´s explains plausibly the experimental sorption isotherms data. Results on characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. Mass diffusivity was higher in desorption than in adsorption phase. The gaseous permeability of these species was between than those of Australian hardwoods and temperate woods. It was difficult to define a relationship between permeability and mass diffusivity.info:eu-repo/semantics/openAccessUniversidad del Bío-BíoMaderas. Ciencia y tecnología v.18 n.1 20162016-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2016000100020en10.4067/S0718-221X2016005000020
institution Scielo Chile
collection Scielo Chile
language English
topic Air permeability
Central Africa
diffusion coefficient
sorption isotherm
tropical woods
spellingShingle Air permeability
Central Africa
diffusion coefficient
sorption isotherm
tropical woods
Simo-Tagne,Merlin
Rémond,Romain
Rogaume,Yann
Zoulalian,André
Perré,Patrick
Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
description This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods widely used for building construction: frake (Terminalia superba), lotofa (Sterculia rhinopetala), sapele (Entandrophragma cylindricum) and ayous (Triplochiton scleroxylon). Characterization of these four species in particular and Central Africa tropical woods in general were necessary to develop conservation and treatment of wood after first transformation using the drying. Also, moisture transport on wooden material used such as wall buildings can be facilitating to found the thermal comfort. Measurements of isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C with air relative humidity ranged from 0% to 90%. Mass diffusivity was determined in steady state using a specific vaporimeter. Air permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties were determined in the tangential direction with a "false" quartersawn board (sapele and lotofa) and in the radial direction with a flatsawn board (ayous and frake). Samples of sapele, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was quite low. We observed also a low difference between the sorption behavior of these different species and hysteresis of sorption decreases when temperature increases. Hailwood-Horrobin model´s explains plausibly the experimental sorption isotherms data. Results on characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. Mass diffusivity was higher in desorption than in adsorption phase. The gaseous permeability of these species was between than those of Australian hardwoods and temperate woods. It was difficult to define a relationship between permeability and mass diffusivity.
author Simo-Tagne,Merlin
Rémond,Romain
Rogaume,Yann
Zoulalian,André
Perré,Patrick
author_facet Simo-Tagne,Merlin
Rémond,Romain
Rogaume,Yann
Zoulalian,André
Perré,Patrick
author_sort Simo-Tagne,Merlin
title Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
title_short Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
title_full Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
title_fullStr Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
title_full_unstemmed Characterization of sorption behavior and mass transfer properties of four central africa tropical woods: Ayous, Sapele, Frake, Lotofa
title_sort characterization of sorption behavior and mass transfer properties of four central africa tropical woods: ayous, sapele, frake, lotofa
publisher Universidad del Bío-Bío
publishDate 2016
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2016000100020
work_keys_str_mv AT simotagnemerlin characterizationofsorptionbehaviorandmasstransferpropertiesoffourcentralafricatropicalwoodsayoussapelefrakelotofa
AT remondromain characterizationofsorptionbehaviorandmasstransferpropertiesoffourcentralafricatropicalwoodsayoussapelefrakelotofa
AT rogaumeyann characterizationofsorptionbehaviorandmasstransferpropertiesoffourcentralafricatropicalwoodsayoussapelefrakelotofa
AT zoulalianandre characterizationofsorptionbehaviorandmasstransferpropertiesoffourcentralafricatropicalwoodsayoussapelefrakelotofa
AT perrepatrick characterizationofsorptionbehaviorandmasstransferpropertiesoffourcentralafricatropicalwoodsayoussapelefrakelotofa
_version_ 1714202622092640256