Evaluation of palm fiber components an alternative biomass wastes for medium density fiberboard manufacturing

Abstract: This work deals with assessing the date Palm component wastes as alternative lignocellulosic material for production of Medium density fiberboards, in order to establish economic and balance between production/consumer ratio at different provinces rather than Upper Egypt. Palm leafs and Pa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adam,Abdel-Baset A., Basta,Altaf H., El-Saied,Houssni
Lenguaje:English
Publicado: Universidad del Bío-Bío 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2018000400579
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: This work deals with assessing the date Palm component wastes as alternative lignocellulosic material for production of Medium density fiberboards, in order to establish economic and balance between production/consumer ratio at different provinces rather than Upper Egypt. Palm leafs and Palm frond was used as Medium density fiberboards precursors. Different urea formaldehyde levels (10-14%/fiber) and pressing pressure (2,5-3,5 MPa) were applied in this evaluation. The acceptable interaction of Palm fibers component with urea formaldehyde was optimized by characterizing its differential scanning calorimetry and thermogravimetric analysis, in comparison with commercial used sugarcane bagasse fibers. The promising Medium density fiberboards Panel is obtained from Palm frond fibers and its mechanical and water resistance properties fulfill the ANSI standard for high grade Medium density fiberboards wood products, especially on applying urea formaldehyde level 12-14%, and pressing pressure 3,5 MPa. It is interesting to note that, applying higher pressing pressure together with 12% urea formaldehyde level provided Palm frond-based Medium density fiberboards with static bending properties, higher than commercial bagasse-based Medium density fiberboards. The insignificant effect of pressing pressure was noticed on water swelling property and free-HCHO of Medium density fiberboards panels. Where, both type of fibers have the same water swelling property (reached ~ 10%), and free-HCHO (~ 27 mg/100g board).