Ultrasound measurement of exterior wood coating thickness

Abstract: The present paper deals with the measurement of coat thickness on wood using an ultrasonic measurement method. Exterior wood coatings (waterborne acrylate dispersions) with coating film thickness between 80 - 115 µm were examined. The non-destructive film thickness measurement used a Surso...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hýsek,Štěpán, Trgala,Kamil, Fidan,Hakan, Pánek,Miloš, Lexa,Martin, Böhm,Martin, Veverka,Jan
Lenguaje:English
Publicado: Universidad del Bío-Bío 2018
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2018000400671
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-221X2018000400671
record_format dspace
spelling oai:scielo:S0718-221X20180004006712019-02-14Ultrasound measurement of exterior wood coating thicknessHýsek,ŠtěpánTrgala,KamilFidan,HakanPánek,MilošLexa,MartinBöhm,MartinVeverka,Jan Acrylate dispersion coat thickness non-destructive measurement ultrasonic Abstract: The present paper deals with the measurement of coat thickness on wood using an ultrasonic measurement method. Exterior wood coatings (waterborne acrylate dispersions) with coating film thickness between 80 - 115 µm were examined. The non-destructive film thickness measurement used a Sursonic ultrasound measuring device, enabling measurement of the thickness of thin films on non-ferromagnetic and simultaneously non-conductive materials. The device also enables measurement of very thin layers of coating films, where the transit time of an ultrasound pulse through the film is shorter than the time width of the pulse. The accuracy of measurement using this measuring device was determined; destructive measurement using a light microscope was chosen as a reference measurement method. Differences in the results measured using the destructive and non-destructive methods were recorded; nevertheless, in most cases, these differences are smaller than the uncertainty of measurement using the light microscope. It can be concluded, therefore, that the results of the two compared methods match over the entire range of thickness of 80 - 115 µm. The largest differences in the measurement readings from the destructive and non-destructive methods were identified in the range of 97 - 103 µm.info:eu-repo/semantics/openAccessUniversidad del Bío-BíoMaderas. Ciencia y tecnología v.20 n.4 20182018-10-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2018000400671en10.4067/S0718-221X2018005041301
institution Scielo Chile
collection Scielo Chile
language English
topic Acrylate dispersion
coat thickness
non-destructive measurement
ultrasonic
spellingShingle Acrylate dispersion
coat thickness
non-destructive measurement
ultrasonic
Hýsek,Štěpán
Trgala,Kamil
Fidan,Hakan
Pánek,Miloš
Lexa,Martin
Böhm,Martin
Veverka,Jan
Ultrasound measurement of exterior wood coating thickness
description Abstract: The present paper deals with the measurement of coat thickness on wood using an ultrasonic measurement method. Exterior wood coatings (waterborne acrylate dispersions) with coating film thickness between 80 - 115 µm were examined. The non-destructive film thickness measurement used a Sursonic ultrasound measuring device, enabling measurement of the thickness of thin films on non-ferromagnetic and simultaneously non-conductive materials. The device also enables measurement of very thin layers of coating films, where the transit time of an ultrasound pulse through the film is shorter than the time width of the pulse. The accuracy of measurement using this measuring device was determined; destructive measurement using a light microscope was chosen as a reference measurement method. Differences in the results measured using the destructive and non-destructive methods were recorded; nevertheless, in most cases, these differences are smaller than the uncertainty of measurement using the light microscope. It can be concluded, therefore, that the results of the two compared methods match over the entire range of thickness of 80 - 115 µm. The largest differences in the measurement readings from the destructive and non-destructive methods were identified in the range of 97 - 103 µm.
author Hýsek,Štěpán
Trgala,Kamil
Fidan,Hakan
Pánek,Miloš
Lexa,Martin
Böhm,Martin
Veverka,Jan
author_facet Hýsek,Štěpán
Trgala,Kamil
Fidan,Hakan
Pánek,Miloš
Lexa,Martin
Böhm,Martin
Veverka,Jan
author_sort Hýsek,Štěpán
title Ultrasound measurement of exterior wood coating thickness
title_short Ultrasound measurement of exterior wood coating thickness
title_full Ultrasound measurement of exterior wood coating thickness
title_fullStr Ultrasound measurement of exterior wood coating thickness
title_full_unstemmed Ultrasound measurement of exterior wood coating thickness
title_sort ultrasound measurement of exterior wood coating thickness
publisher Universidad del Bío-Bío
publishDate 2018
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2018000400671
work_keys_str_mv AT hysek352t283pan ultrasoundmeasurementofexteriorwoodcoatingthickness
AT trgalakamil ultrasoundmeasurementofexteriorwoodcoatingthickness
AT fidanhakan ultrasoundmeasurementofexteriorwoodcoatingthickness
AT panekmilo353 ultrasoundmeasurementofexteriorwoodcoatingthickness
AT lexamartin ultrasoundmeasurementofexteriorwoodcoatingthickness
AT bohmmartin ultrasoundmeasurementofexteriorwoodcoatingthickness
AT veverkajan ultrasoundmeasurementofexteriorwoodcoatingthickness
_version_ 1714202663641415680