An experimental and numerical study of moisture transport and moisture-induced strain in fast-grown Sitka spruce

Abstract: The use of fast-grown timber in the manufacture of engineered wood products is increasing; however, the fast growth rate results in a low-density timber that is susceptible to significant swelling and shrinkage deformations under changing moisture content. The current study focuses on the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: O'Ceallaigh,Conan, Sikora,Karol, McPolin,Daniel, Harte,Annette M.
Lenguaje:English
Publicado: Universidad del Bío-Bío 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2019000100045
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract: The use of fast-grown timber in the manufacture of engineered wood products is increasing; however, the fast growth rate results in a low-density timber that is susceptible to significant swelling and shrinkage deformations under changing moisture content. The current study focuses on the characterisation of the moisture diffusion and swelling/shrinkage of fast-grown Sitka spruce and the prediction of the moisture-induced strain development in Sitka spruce glulam beams under variable humidity cycles. Moisture content evolution and swelling/shrinkage coefficients were measured and the longitudinal swelling/shrinkage was found to be significantly greater than for slow-grown timber. Sitka spruce glued-laminated beams were subjected to controlled relative humidity cycling for 52 weeks and the moisture distribution and moisture-induced strains were measured continuously. Coupled moisture-displacement numerical models, incorporating the experimentally measured material parameters were developed. The effect of the glue-line was found to have an insignificant effect on moisture transport, however, the material orientation greatly influenced the predicted moisture-induced strain. Accurately mapping the material orientation produced significantly better predictions of the experimental results over the 52-week period.