Automatic identification of charcoal origin based on deep learning

Abstract: The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and De...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodrigues de Oliveira Neto,Ricardo, Ferreira Rodrigues,Larissa, Mari,João Fernando, Coelho Naldi,Murilo, Gomes Milagres,Emerson, Rocha Vital,Benedito, Oliveira Carneiro,Angélica de Cássia, Breda Binoti,Daniel Henrique, Lopes,Pablo Falco, Garcia Leite,Helio
Lenguaje:English
Publicado: Universidad del Bío-Bío 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2021000100465
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-221X2021000100465
record_format dspace
spelling oai:scielo:S0718-221X20210001004652021-10-05Automatic identification of charcoal origin based on deep learningRodrigues de Oliveira Neto,RicardoFerreira Rodrigues,LarissaMari,João FernandoCoelho Naldi,MuriloGomes Milagres,EmersonRocha Vital,BeneditoOliveira Carneiro,Angélica de CássiaBreda Binoti,Daniel HenriqueLopes,Pablo FalcoGarcia Leite,Helio Charcoal classification deep learning native wood preprocessing. Abstract: The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.info:eu-repo/semantics/openAccessUniversidad del Bío-BíoMaderas. Ciencia y tecnología v.23 20212021-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2021000100465en10.4067/s0718-221x2021000100465
institution Scielo Chile
collection Scielo Chile
language English
topic Charcoal
classification
deep learning
native wood
preprocessing.
spellingShingle Charcoal
classification
deep learning
native wood
preprocessing.
Rodrigues de Oliveira Neto,Ricardo
Ferreira Rodrigues,Larissa
Mari,João Fernando
Coelho Naldi,Murilo
Gomes Milagres,Emerson
Rocha Vital,Benedito
Oliveira Carneiro,Angélica de Cássia
Breda Binoti,Daniel Henrique
Lopes,Pablo Falco
Garcia Leite,Helio
Automatic identification of charcoal origin based on deep learning
description Abstract: The differentiation between the charcoal produced from (Eucalyptus) plantations and native forests is essential to control, commercialization, and supervision of its production in Brazil. The main contribution of this study is to identify the charcoal origin using macroscopic images and Deep Learning Algorithm. We applied a Convolutional Neural Network (CNN) using VGG-16 architecture, with preprocessing based on contrast enhancement and data augmentation with rotation over the training set images. on the performance of the CNN with fine-tuning using 360 macroscopic charcoal images from the plantation and native forests. The results pointed out that our method provides new perspectives to identify the charcoal origin, achieving results upper 95 % of mean accuracy to classify charcoal from native forests for all compared preprocessing strategies.
author Rodrigues de Oliveira Neto,Ricardo
Ferreira Rodrigues,Larissa
Mari,João Fernando
Coelho Naldi,Murilo
Gomes Milagres,Emerson
Rocha Vital,Benedito
Oliveira Carneiro,Angélica de Cássia
Breda Binoti,Daniel Henrique
Lopes,Pablo Falco
Garcia Leite,Helio
author_facet Rodrigues de Oliveira Neto,Ricardo
Ferreira Rodrigues,Larissa
Mari,João Fernando
Coelho Naldi,Murilo
Gomes Milagres,Emerson
Rocha Vital,Benedito
Oliveira Carneiro,Angélica de Cássia
Breda Binoti,Daniel Henrique
Lopes,Pablo Falco
Garcia Leite,Helio
author_sort Rodrigues de Oliveira Neto,Ricardo
title Automatic identification of charcoal origin based on deep learning
title_short Automatic identification of charcoal origin based on deep learning
title_full Automatic identification of charcoal origin based on deep learning
title_fullStr Automatic identification of charcoal origin based on deep learning
title_full_unstemmed Automatic identification of charcoal origin based on deep learning
title_sort automatic identification of charcoal origin based on deep learning
publisher Universidad del Bío-Bío
publishDate 2021
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-221X2021000100465
work_keys_str_mv AT rodriguesdeoliveiranetoricardo automaticidentificationofcharcoaloriginbasedondeeplearning
AT ferreirarodrigueslarissa automaticidentificationofcharcoaloriginbasedondeeplearning
AT marijoaofernando automaticidentificationofcharcoaloriginbasedondeeplearning
AT coelhonaldimurilo automaticidentificationofcharcoaloriginbasedondeeplearning
AT gomesmilagresemerson automaticidentificationofcharcoaloriginbasedondeeplearning
AT rochavitalbenedito automaticidentificationofcharcoaloriginbasedondeeplearning
AT oliveiracarneiroangelicadecassia automaticidentificationofcharcoaloriginbasedondeeplearning
AT bredabinotidanielhenrique automaticidentificationofcharcoaloriginbasedondeeplearning
AT lopespablofalco automaticidentificationofcharcoaloriginbasedondeeplearning
AT garcialeitehelio automaticidentificationofcharcoaloriginbasedondeeplearning
_version_ 1718324171365154816