Distribución del carbono orgánico del suelo almacenado en el perfil de un Alfisol en ecosistemas Mediterráneos de Chile

The overexploitation of the natural resources in the Mediterranean-type climate region of Chile, has resulted in natural forest fragmentation and expansion of Acacia caven (Mol), forming the ‘Espinal’ ecosystem (EE) that includes two million of hectares in the Central part of Chile. The effect of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muñoz,Cristina, Ovalle,Carlos, Zagal,Erick
Lenguaje:Spanish / Castilian
Publicado: Sociedad Chilena de la Ciencia del Suelo 2007
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27912007000100002
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The overexploitation of the natural resources in the Mediterranean-type climate region of Chile, has resulted in natural forest fragmentation and expansion of Acacia caven (Mol), forming the ‘Espinal’ ecosystem (EE) that includes two million of hectares in the Central part of Chile. The effect of the anthropogenic intervention over the soil organic carbon (SOC) in these ecosystems is unknown. The aim of this study was to quantify the SOC stocks and it profile distribution in the EE. This was achieved by collecting soils samples according to soil coverage percentage canopy from: well-preserved Espinal (WPE), 51-80 %; good-preserved (GE), 26-50 %; degraded (DE), 11-25 % and very degraded (VDE), 0-10 %. We also included a native forest (NF), 80-98 % of soil coverage to evaluate the pristine condition ecosystem. Soil samples were collected under canopy of A. caven and from intercanopy (1.5 m outside) at four depths (0-5, 5-10, 10-20 and 20-40 cm). SOC was determined by wet oxidation and colorimetric analysis. Native forest had 50 % more SOC content than EE. Soil coverage was directly related to SOC content, having WPE and GE 44 % more SOC stock than DE and VDE. A. caven canopy increased 25 % the C stock in the profile compared to intercanopy. In conclusion, the EE presented an elevated potential for increase SOC stock under canopy, and therefore this represents a potential carbon sink that contribute to atmospheric CO2 reduction