PHOSPHORUS-MOLYBDENUM RELATIONSHIP IN SOIL AND RED CLOVER (Trifolium pratense L.) ON AN ACID ANDISOL
We studied the phosphorous (P) and molybdenum (Mo) relationship in soil and red clover (Trifoliumpratense L.) in a non limed and limed acid Andisol of Southern Chile. In soil, we evaluated the effect of different liming (0 and 2000 mg kg-1), P (0, 200 and 400 mg kg-1), and Mo (0, 0.58 and 0.96 mg kg...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Sociedad Chilena de la Ciencia del Suelo
2010
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27912010000100008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We studied the phosphorous (P) and molybdenum (Mo) relationship in soil and red clover (Trifoliumpratense L.) in a non limed and limed acid Andisol of Southern Chile. In soil, we evaluated the effect of different liming (0 and 2000 mg kg-1), P (0, 200 and 400 mg kg-1), and Mo (0, 0.58 and 0.96 mg kg-1) doses supply on soil available Mo. In addition, the availability of P and Calcium (Ca) in treated soils was determinated. In red clover, we studied the Mo and P shoot concentrations and dry matter yield in response to the different treatments applied to the soil. Also, we measured the changes produced by Mo uptake in shoot Cu concentrations. The results showed that both, lime and more strongly P and Mo additions significantly (P ≥ 0.05) increased soil Mo availability. In contrast, soil available P was not significantly (P ≥0.05) affected by liming and Mo treatments. A significant high correlation (r = 0.579, at P ≥ 0.05) was observed among soil Mo availability and shoot Mo concentrations, as well as between soil available P and shoot concentration of P (r = 0.844, at P ≥ 0.01). In this study for all fertilization treatments, shoot Cu concentrations reached values which are considered as normal for forage species. We also shown that the simultaneous applications of high P and Mo rates could be produce red clover shoot Cu/Mo ratios that should provoke Mo-induced Cu deficiency (Molybdenosis) for the cattle. Red clover yield was no significantly different in limed and non limed soils. Nevertheless, red clover yield production increased at increasing rates of P and Mo in both, non limed and limed soil. The major practical implication of these results is that the application of Mo doses equal or superior to 200 g ha-1 to acid Andisols, are recommendable to obtain appropriate Mo shoot content on red clover. In addition, our results shown that P supply to these soils, rather than liming, is necessary to obtain sufficient values of shoot Mo concentrations in red clover. |
---|