SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES

The purpose of this study was to measure the effects of different land uses on soil glycosidase activities (a- and (β-glucosidase, α- and (β-galactosidase), water soluble organic carbon (WSOC) and their relationships. Glycosidase activities showed significant differences u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ma,X. Z, Chen,L. J, Chen,Z. H, Wu,Z.J, Zhang,L.L, Zhang,Y.L
Lenguaje:English
Publicado: Sociedad Chilena de la Ciencia del Suelo 2010
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27912010000200001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-27912010000200001
record_format dspace
spelling oai:scielo:S0718-279120100002000012010-07-12SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPESMa,X. ZChen,L. JChen,Z. HWu,Z.JZhang,L.LZhang,Y.L Glycosidase activities Water soluble organic carbon Land use Soil depth The purpose of this study was to measure the effects of different land uses on soil glycosidase activities (a- and (β-glucosidase, α- and (β-galactosidase), water soluble organic carbon (WSOC) and their relationships. Glycosidase activities showed significant differences under different land use types, the highest one was woodland. (β-glucosidase had the highest activity among the four glycosidases. The activities of these glycosidases decreased with increasing soil depth, being all significantly affected by change of soil depth. Except grassland, the four glycosidase activities intercorrelated each other. Woodland had the highest content of WSOC in the soil depth of 0-20 cm and at increasing soil depth, WSOC content decreased sharply under woodland and grassland. Glycosidase activities had positive and significant relationships with WSOC. Glycosidase activities and WSOC all had significant correlations with soil total organic carbon (TOC) and pH, which were sensitive to different land use types. We found that glycosidase activity indirectly impacts on nutrient recycling and energy flow in soil under different land use types.info:eu-repo/semantics/openAccessSociedad Chilena de la Ciencia del SueloRevista de la ciencia del suelo y nutrición vegetal v.10 n.2 20102010-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27912010000200001en10.4067/S0718-27912010000200001
institution Scielo Chile
collection Scielo Chile
language English
topic Glycosidase activities
Water soluble organic carbon
Land use
Soil depth
spellingShingle Glycosidase activities
Water soluble organic carbon
Land use
Soil depth
Ma,X. Z
Chen,L. J
Chen,Z. H
Wu,Z.J
Zhang,L.L
Zhang,Y.L
SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
description The purpose of this study was to measure the effects of different land uses on soil glycosidase activities (a- and (β-glucosidase, α- and (β-galactosidase), water soluble organic carbon (WSOC) and their relationships. Glycosidase activities showed significant differences under different land use types, the highest one was woodland. (β-glucosidase had the highest activity among the four glycosidases. The activities of these glycosidases decreased with increasing soil depth, being all significantly affected by change of soil depth. Except grassland, the four glycosidase activities intercorrelated each other. Woodland had the highest content of WSOC in the soil depth of 0-20 cm and at increasing soil depth, WSOC content decreased sharply under woodland and grassland. Glycosidase activities had positive and significant relationships with WSOC. Glycosidase activities and WSOC all had significant correlations with soil total organic carbon (TOC) and pH, which were sensitive to different land use types. We found that glycosidase activity indirectly impacts on nutrient recycling and energy flow in soil under different land use types.
author Ma,X. Z
Chen,L. J
Chen,Z. H
Wu,Z.J
Zhang,L.L
Zhang,Y.L
author_facet Ma,X. Z
Chen,L. J
Chen,Z. H
Wu,Z.J
Zhang,L.L
Zhang,Y.L
author_sort Ma,X. Z
title SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
title_short SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
title_full SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
title_fullStr SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
title_full_unstemmed SOIL GLYCOSIDASE ACTIVITIES AND WATER SOLUBLE ORGANIC CARBON UNDER DIFFERENT LAND USE TYPES
title_sort soil glycosidase activities and water soluble organic carbon under different land use types
publisher Sociedad Chilena de la Ciencia del Suelo
publishDate 2010
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-27912010000200001
work_keys_str_mv AT maxz soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
AT chenlj soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
AT chenzh soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
AT wuzj soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
AT zhangll soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
AT zhangyl soilglycosidaseactivitiesandwatersolubleorganiccarbonunderdifferentlandusetypes
_version_ 1714203324875538432