IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS

This paper presents a feature based on out-of-vocabulary word statistics that complements the information sources used in the decision by state-of-the-art spam filters. The experiments included freely available spam filters as reference, SpamAssassin, Bogofilter, SpamBayes and SpamProbe, as well as...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Agüero,Pablo Daniel, Castiñeira Moreira,Jorge, Liberatori,Monica, Bonadero,Juan Carlos, Tulli,Juan Carlos
Lenguaje:English
Publicado: Universidad de Tarapacá. 2009
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052009000300012
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-33052009000300012
record_format dspace
spelling oai:scielo:S0718-330520090003000122010-09-07IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICSAgüero,Pablo DanielCastiñeira Moreira,JorgeLiberatori,MonicaBonadero,Juan CarlosTulli,Juan Carlos Spam filtering out-of-vocabulary This paper presents a feature based on out-of-vocabulary word statistics that complements the information sources used in the decision by state-of-the-art spam filters. The experiments included freely available spam filters as reference, SpamAssassin, Bogofilter, SpamBayes and SpamProbe, as well as a Naive Bayes classifier. The results show that the decision based on the proposed feature improves the performance of all spam filters under study.info:eu-repo/semantics/openAccessUniversidad de Tarapacá.Ingeniare. Revista chilena de ingeniería v.17 n.3 20092009-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052009000300012en10.4067/S0718-33052009000300012
institution Scielo Chile
collection Scielo Chile
language English
topic Spam
filtering
out-of-vocabulary
spellingShingle Spam
filtering
out-of-vocabulary
Agüero,Pablo Daniel
Castiñeira Moreira,Jorge
Liberatori,Monica
Bonadero,Juan Carlos
Tulli,Juan Carlos
IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
description This paper presents a feature based on out-of-vocabulary word statistics that complements the information sources used in the decision by state-of-the-art spam filters. The experiments included freely available spam filters as reference, SpamAssassin, Bogofilter, SpamBayes and SpamProbe, as well as a Naive Bayes classifier. The results show that the decision based on the proposed feature improves the performance of all spam filters under study.
author Agüero,Pablo Daniel
Castiñeira Moreira,Jorge
Liberatori,Monica
Bonadero,Juan Carlos
Tulli,Juan Carlos
author_facet Agüero,Pablo Daniel
Castiñeira Moreira,Jorge
Liberatori,Monica
Bonadero,Juan Carlos
Tulli,Juan Carlos
author_sort Agüero,Pablo Daniel
title IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
title_short IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
title_full IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
title_fullStr IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
title_full_unstemmed IMPROVING THE PERFORMANCE OF ANTI-SPAM FILTERS USING OUT-OF-VOCABULARY STATISTICS
title_sort improving the performance of anti-spam filters using out-of-vocabulary statistics
publisher Universidad de Tarapacá.
publishDate 2009
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052009000300012
work_keys_str_mv AT agueropablodaniel improvingtheperformanceofantispamfiltersusingoutofvocabularystatistics
AT castineiramoreirajorge improvingtheperformanceofantispamfiltersusingoutofvocabularystatistics
AT liberatorimonica improvingtheperformanceofantispamfiltersusingoutofvocabularystatistics
AT bonaderojuancarlos improvingtheperformanceofantispamfiltersusingoutofvocabularystatistics
AT tullijuancarlos improvingtheperformanceofantispamfiltersusingoutofvocabularystatistics
_version_ 1714203379947798528