Empirical evaluation of three machine learning method for automatic classification of neoplastic diagnoses
Diagnoses are a valuable source of information for evaluating a health system. However, they are not used extensively by information systems because diagnoses are normally written in natural language. This work empirically evaluates three machine learning methods to automatically assign codes from t...
Guardado en:
Autores principales: | Jara,José Luis, Chacón,Max, Zelaya,Gonzalo |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de Tarapacá.
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052011000300006 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Diagnosing Neurally Mediated Syncope Using Classification Techniques
por: Shahadat Hussain, et al.
Publicado: (2021) -
The impact of conversion to International Classification of Diseases, 10th revision (ICD-10) on an academic ophthalmology practice
por: Hellman JB, et al.
Publicado: (2018) -
Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
por: Shengxue Zhu, et al.
Publicado: (2021) -
Machine Learning Based Embedded Code Multi-Label Classification
por: Yu Zhou, et al.
Publicado: (2021) -
Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
por: Martin Müller, et al.
Publicado: (2021)