Optimización de sistemas simulados a través de técnicas de superficie de respuesta
El propósito de este artículo es mostrar la aplicabilidad y ventajas de las técnicas estadísticas de diseño de experimentos como una alternativa útil para la optimización de modelos de simulación discreta. Los sistemas simulados son representaciones computacionales de sistemas reales, se definen com...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | Spanish / Castilian |
Publicado: |
Universidad de Tarapacá.
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052015000300011 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | El propósito de este artículo es mostrar la aplicabilidad y ventajas de las técnicas estadísticas de diseño de experimentos como una alternativa útil para la optimización de modelos de simulación discreta. Los sistemas simulados son representaciones computacionales de sistemas reales, se definen como dinámicos debido a que evolucionan en el tiempo por medio de la ocurrencia de eventos discretos, su ventaja es que permiten analizar y experimentar evitando los costos y riesgos que tendría una intervención en un sistema real. En este artículo, mediante un caso de estudio, se desarrolla una metodología que muestra las ventajas de la aplicación de la técnica de superficie de respuesta para la optimización de sistemas simulados. El caso de estudio corresponde a un sistema de producción diseñado con la filosofía empresarial Justo a Tiempo (traducción del inglés Just in Time, JIT), específicamente un sistema KANBAN/CONWIP, donde se analizó el impacto que tienen ciertos factores operacionales acerca de la eficiencia, haciendo uso de técnicas de diseño de experimentos para la optimización estocástica. Los resultados obtenidos demuestran la efectividad que tiene la integración de las técnicas de diseño de experimentos y simulación discreta en la definición de parámetros operacionales de los procesos productivos, además de mejorar la confiabilidad de las metodologías encontradas en la literatura con una nueva consideración estadística. |
---|