Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion
We deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020° C for 4 hour...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de Tarapacá.
2016
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052016000200004 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-33052016000200004 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-330520160002000042016-04-15Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusionCastillejo Nieto,Fabio EnriqueOlaya Floréz,Jhon JairoAlfonso Orjuela,José Edgar Coatings thermo reactive niobium-vanadium carbide spectroscopy impedance We deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020° C for 4 hours. The coatings were characterized morphologically via electron microscopy scanning (SEM), the chemical surface composition was determined through X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX); the crystal structure was analyzed using x-ray diffraction (XRD), the mechanical properties of the coatings were evaluated using nano-indentation, The tribological properties of the coatings obtained were determined using a Pin-on-disk tribometer and the electrochemical behavior was studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the hardness of the coated steel increased four times with respect to uncoated steel, and the electrochemical test established that the corrosion current is lower by one order of magnitude for coated steel.info:eu-repo/semantics/openAccessUniversidad de Tarapacá.Ingeniare. Revista chilena de ingeniería v.24 n.2 20162016-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052016000200004en10.4067/S0718-33052016000200004 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Coatings thermo reactive niobium-vanadium carbide spectroscopy impedance |
spellingShingle |
Coatings thermo reactive niobium-vanadium carbide spectroscopy impedance Castillejo Nieto,Fabio Enrique Olaya Floréz,Jhon Jairo Alfonso Orjuela,José Edgar Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
description |
We deposited of niobium-vanadium carbide coatings on tool steel AISI H13 using the thermo-reactive substrates deposition/diffusion (TRD) technique. The carbides were obtained using salt baths composed of molten borax, ferroniobium, vanadium and aluminum, by heating this mixture at 1020° C for 4 hours. The coatings were characterized morphologically via electron microscopy scanning (SEM), the chemical surface composition was determined through X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX); the crystal structure was analyzed using x-ray diffraction (XRD), the mechanical properties of the coatings were evaluated using nano-indentation, The tribological properties of the coatings obtained were determined using a Pin-on-disk tribometer and the electrochemical behavior was studied through potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that the hardness of the coated steel increased four times with respect to uncoated steel, and the electrochemical test established that the corrosion current is lower by one order of magnitude for coated steel. |
author |
Castillejo Nieto,Fabio Enrique Olaya Floréz,Jhon Jairo Alfonso Orjuela,José Edgar |
author_facet |
Castillejo Nieto,Fabio Enrique Olaya Floréz,Jhon Jairo Alfonso Orjuela,José Edgar |
author_sort |
Castillejo Nieto,Fabio Enrique |
title |
Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
title_short |
Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
title_full |
Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
title_fullStr |
Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
title_full_unstemmed |
Electrochemical and wear behavior of niobium-vanadium carbide coatings produced on AISI H13 tool steel through thermo-reactive deposition/diffusion |
title_sort |
electrochemical and wear behavior of niobium-vanadium carbide coatings produced on aisi h13 tool steel through thermo-reactive deposition/diffusion |
publisher |
Universidad de Tarapacá. |
publishDate |
2016 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052016000200004 |
work_keys_str_mv |
AT castillejonietofabioenrique electrochemicalandwearbehaviorofniobiumvanadiumcarbidecoatingsproducedonaisih13toolsteelthroughthermoreactivedepositiondiffusion AT olayaflorezjhonjairo electrochemicalandwearbehaviorofniobiumvanadiumcarbidecoatingsproducedonaisih13toolsteelthroughthermoreactivedepositiondiffusion AT alfonsoorjuelajoseedgar electrochemicalandwearbehaviorofniobiumvanadiumcarbidecoatingsproducedonaisih13toolsteelthroughthermoreactivedepositiondiffusion |
_version_ |
1714203432095580160 |