Regression models for the front grinding process on Grey Cast Iron block-engine

ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pérez-Salinas,Cristian, Valencia Nuñez,Roberto, Analuiza Maiza,Oscar, Fiallos Zamora,Luis, Paredes Zumbana,Jorge
Lenguaje:English
Publicado: Universidad de Tarapacá. 2019
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-33052019000300510
record_format dspace
spelling oai:scielo:S0718-330520190003005102019-11-06Regression models for the front grinding process on Grey Cast Iron block-enginePérez-Salinas,CristianValencia Nuñez,RobertoAnaluiza Maiza,OscarFiallos Zamora,LuisParedes Zumbana,Jorge Regression models grinding wear parameter surface roughness cutting parameter ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study is based on the use of an experimental design (DOE) using two input variables (factors) feed rate and cut depth at three levels and a categorical variable tool at two levels. The methods used to obtain models were linear regression, multiple linear regression and logistic regression. The findings show that the type of tool and the speed of advance, have greater correlation with surface quality and wear respectively. All the models establish a significant incidence of these factors on the response variables with a confidence level of 95%. The results of the test show that with the use of a carbide tool, a better surface quality can be obtained with the lowest wear parameter. Finally, an SEM test showed the best surface topography obtained with the carbide tool compared to the alumina tool.info:eu-repo/semantics/openAccessUniversidad de Tarapacá.Ingeniare. Revista chilena de ingeniería v.27 n.3 20192019-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510en10.4067/S0718-33052019000300510
institution Scielo Chile
collection Scielo Chile
language English
topic Regression models
grinding
wear parameter
surface roughness
cutting parameter
spellingShingle Regression models
grinding
wear parameter
surface roughness
cutting parameter
Pérez-Salinas,Cristian
Valencia Nuñez,Roberto
Analuiza Maiza,Oscar
Fiallos Zamora,Luis
Paredes Zumbana,Jorge
Regression models for the front grinding process on Grey Cast Iron block-engine
description ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study is based on the use of an experimental design (DOE) using two input variables (factors) feed rate and cut depth at three levels and a categorical variable tool at two levels. The methods used to obtain models were linear regression, multiple linear regression and logistic regression. The findings show that the type of tool and the speed of advance, have greater correlation with surface quality and wear respectively. All the models establish a significant incidence of these factors on the response variables with a confidence level of 95%. The results of the test show that with the use of a carbide tool, a better surface quality can be obtained with the lowest wear parameter. Finally, an SEM test showed the best surface topography obtained with the carbide tool compared to the alumina tool.
author Pérez-Salinas,Cristian
Valencia Nuñez,Roberto
Analuiza Maiza,Oscar
Fiallos Zamora,Luis
Paredes Zumbana,Jorge
author_facet Pérez-Salinas,Cristian
Valencia Nuñez,Roberto
Analuiza Maiza,Oscar
Fiallos Zamora,Luis
Paredes Zumbana,Jorge
author_sort Pérez-Salinas,Cristian
title Regression models for the front grinding process on Grey Cast Iron block-engine
title_short Regression models for the front grinding process on Grey Cast Iron block-engine
title_full Regression models for the front grinding process on Grey Cast Iron block-engine
title_fullStr Regression models for the front grinding process on Grey Cast Iron block-engine
title_full_unstemmed Regression models for the front grinding process on Grey Cast Iron block-engine
title_sort regression models for the front grinding process on grey cast iron block-engine
publisher Universidad de Tarapacá.
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510
work_keys_str_mv AT perezsalinascristian regressionmodelsforthefrontgrindingprocessongreycastironblockengine
AT valencianunezroberto regressionmodelsforthefrontgrindingprocessongreycastironblockengine
AT analuizamaizaoscar regressionmodelsforthefrontgrindingprocessongreycastironblockengine
AT fialloszamoraluis regressionmodelsforthefrontgrindingprocessongreycastironblockengine
AT paredeszumbanajorge regressionmodelsforthefrontgrindingprocessongreycastironblockengine
_version_ 1714203473111678976