Regression models for the front grinding process on Grey Cast Iron block-engine
ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de Tarapacá.
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-33052019000300510 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-330520190003005102019-11-06Regression models for the front grinding process on Grey Cast Iron block-enginePérez-Salinas,CristianValencia Nuñez,RobertoAnaluiza Maiza,OscarFiallos Zamora,LuisParedes Zumbana,Jorge Regression models grinding wear parameter surface roughness cutting parameter ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study is based on the use of an experimental design (DOE) using two input variables (factors) feed rate and cut depth at three levels and a categorical variable tool at two levels. The methods used to obtain models were linear regression, multiple linear regression and logistic regression. The findings show that the type of tool and the speed of advance, have greater correlation with surface quality and wear respectively. All the models establish a significant incidence of these factors on the response variables with a confidence level of 95%. The results of the test show that with the use of a carbide tool, a better surface quality can be obtained with the lowest wear parameter. Finally, an SEM test showed the best surface topography obtained with the carbide tool compared to the alumina tool.info:eu-repo/semantics/openAccessUniversidad de Tarapacá.Ingeniare. Revista chilena de ingeniería v.27 n.3 20192019-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510en10.4067/S0718-33052019000300510 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Regression models grinding wear parameter surface roughness cutting parameter |
spellingShingle |
Regression models grinding wear parameter surface roughness cutting parameter Pérez-Salinas,Cristian Valencia Nuñez,Roberto Analuiza Maiza,Oscar Fiallos Zamora,Luis Paredes Zumbana,Jorge Regression models for the front grinding process on Grey Cast Iron block-engine |
description |
ABSTRACT This document describes the obtaining of different regression models for the surface roughness and wear parameter in abrasive wheels Alumina (Al2O3) and silicon carbide (CSi) under the influence of cutting parameters in the frontal grinding process. The methodology used in the present study is based on the use of an experimental design (DOE) using two input variables (factors) feed rate and cut depth at three levels and a categorical variable tool at two levels. The methods used to obtain models were linear regression, multiple linear regression and logistic regression. The findings show that the type of tool and the speed of advance, have greater correlation with surface quality and wear respectively. All the models establish a significant incidence of these factors on the response variables with a confidence level of 95%. The results of the test show that with the use of a carbide tool, a better surface quality can be obtained with the lowest wear parameter. Finally, an SEM test showed the best surface topography obtained with the carbide tool compared to the alumina tool. |
author |
Pérez-Salinas,Cristian Valencia Nuñez,Roberto Analuiza Maiza,Oscar Fiallos Zamora,Luis Paredes Zumbana,Jorge |
author_facet |
Pérez-Salinas,Cristian Valencia Nuñez,Roberto Analuiza Maiza,Oscar Fiallos Zamora,Luis Paredes Zumbana,Jorge |
author_sort |
Pérez-Salinas,Cristian |
title |
Regression models for the front grinding process on Grey Cast Iron block-engine |
title_short |
Regression models for the front grinding process on Grey Cast Iron block-engine |
title_full |
Regression models for the front grinding process on Grey Cast Iron block-engine |
title_fullStr |
Regression models for the front grinding process on Grey Cast Iron block-engine |
title_full_unstemmed |
Regression models for the front grinding process on Grey Cast Iron block-engine |
title_sort |
regression models for the front grinding process on grey cast iron block-engine |
publisher |
Universidad de Tarapacá. |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-33052019000300510 |
work_keys_str_mv |
AT perezsalinascristian regressionmodelsforthefrontgrindingprocessongreycastironblockengine AT valencianunezroberto regressionmodelsforthefrontgrindingprocessongreycastironblockengine AT analuizamaizaoscar regressionmodelsforthefrontgrindingprocessongreycastironblockengine AT fialloszamoraluis regressionmodelsforthefrontgrindingprocessongreycastironblockengine AT paredeszumbanajorge regressionmodelsforthefrontgrindingprocessongreycastironblockengine |
_version_ |
1714203473111678976 |