Modelos implementados en el análisis de series de tiempo de temperatura superficial e índices de vegetación: Una propuesta taxonómica en el contexto de cambio climático global

Resumen: El cambio climático y el calentamiento global son provocados principalmente por las actividades antrópicas. Por esta razón, conocer las líneas de investigación que relacionen Series de Tiempo de Temperatura Superficial e Índices de Vegetación es de suma importancia, dada la amplitud de las...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zuluaga Gómez,Oscar Arley, Patiño Quinchía,Jorge Eduardo, Valencia Hernández,German Mauricio
Lenguaje:Spanish / Castilian
Publicado: Pontificia Universidad Católica de Chile. Instituto de Geografía 2021
Materias:
GCM
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-34022021000100323
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Resumen: El cambio climático y el calentamiento global son provocados principalmente por las actividades antrópicas. Por esta razón, conocer las líneas de investigación que relacionen Series de Tiempo de Temperatura Superficial e Índices de Vegetación es de suma importancia, dada la amplitud de las diferentes áreas científicas abiertas sobre el calentamiento global. Se presenta a la comunidad académica, por tanto, el resultado de la presente clasificación, la cual divide los estudios en dos áreas principales representativas en el estudio del cambio climático: (1) Modelado y Análisis de Geodatos y (2) Teledetección. De este último se derivan dos tipos, unos construidos con Análisis de Regresión Lineal (RL) y otros con Análisis de Regresión No Lineal (RNL). En el Modelado y Análisis de Geodatos, los Modelos Climáticos Globales (GCM) no son la herramienta adecuada para estos análisis debido a su gruesa resolución espacial. Esto implica el desarrollo de modelos híbridos con teledetección, que están también limitados por las diferencias de resolución. Por el contrario, la teledetección es la herramienta de mayor difusión para este tipo de estudios. Finalmente, se abre una prometedora ventana para el desarrollo en las series de tiempo con análisis de Regresión No Lineal.