Economic indicators for automobile claim frequencies
Abstract: This article examines the relationship between observed claim frequencies in the automobile insurance line and the evolution of selected economic magnitudes. From a variety of economic variables, we aim to identify the main factors affecting claim frequencies, while controlling for other l...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Universidad de Chile. Departamento de Economía
2019
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-52862019000200245 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-52862019000200245 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-528620190002002452020-01-07Economic indicators for automobile claim frequenciesBoj,EvaCastañer,AnnaClaramunt,M. MerceCosta,TeresaRoch,Oriol Categories of vehicles dynamic regression external predictors motor insurance time series Abstract: This article examines the relationship between observed claim frequencies in the automobile insurance line and the evolution of selected economic magnitudes. From a variety of economic variables, we aim to identify the main factors affecting claim frequencies, while controlling for other legislative and demographic factors. Through a dynamic regression model, the analysis is conducted for three different categories of vehicles and for a variety of coverages. A comprehensive dataset from the main Spanish insurance companies is used to calibrate the model. The evidence might assist companies to improve ratemaking.info:eu-repo/semantics/openAccessUniversidad de Chile. Departamento de EconomíaEstudios de economía v.46 n.2 20192019-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-52862019000200245en10.4067/S0718-52862019000200245 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Categories of vehicles dynamic regression external predictors motor insurance time series |
spellingShingle |
Categories of vehicles dynamic regression external predictors motor insurance time series Boj,Eva Castañer,Anna Claramunt,M. Merce Costa,Teresa Roch,Oriol Economic indicators for automobile claim frequencies |
description |
Abstract: This article examines the relationship between observed claim frequencies in the automobile insurance line and the evolution of selected economic magnitudes. From a variety of economic variables, we aim to identify the main factors affecting claim frequencies, while controlling for other legislative and demographic factors. Through a dynamic regression model, the analysis is conducted for three different categories of vehicles and for a variety of coverages. A comprehensive dataset from the main Spanish insurance companies is used to calibrate the model. The evidence might assist companies to improve ratemaking. |
author |
Boj,Eva Castañer,Anna Claramunt,M. Merce Costa,Teresa Roch,Oriol |
author_facet |
Boj,Eva Castañer,Anna Claramunt,M. Merce Costa,Teresa Roch,Oriol |
author_sort |
Boj,Eva |
title |
Economic indicators for automobile claim frequencies |
title_short |
Economic indicators for automobile claim frequencies |
title_full |
Economic indicators for automobile claim frequencies |
title_fullStr |
Economic indicators for automobile claim frequencies |
title_full_unstemmed |
Economic indicators for automobile claim frequencies |
title_sort |
economic indicators for automobile claim frequencies |
publisher |
Universidad de Chile. Departamento de Economía |
publishDate |
2019 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-52862019000200245 |
work_keys_str_mv |
AT bojeva economicindicatorsforautomobileclaimfrequencies AT castaneranna economicindicatorsforautomobileclaimfrequencies AT claramuntmmerce economicindicatorsforautomobileclaimfrequencies AT costateresa economicindicatorsforautomobileclaimfrequencies AT rochoriol economicindicatorsforautomobileclaimfrequencies |
_version_ |
1714205054394695680 |