Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping

The objective of this paper was the development of a methodology for the classification of digital aerial images, which, with the aid of object-based classification and the Normalized Difference Vegetation Index (NDVI), can quantify agricultural areas, by using algorithms of expert classification, w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Perea,Alberto Jesús, Meroño,José Emilio, Aguilera,María Jesús
Lenguaje:English
Publicado: Instituto de Investigaciones Agropecuarias, INIA 2009
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392009000300013
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-58392009000300013
record_format dspace
spelling oai:scielo:S0718-583920090003000132018-10-01Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use MappingPerea,Alberto JesúsMeroño,José EmilioAguilera,María Jesús expert classification vegetation index land cover object-based classification The objective of this paper was the development of a methodology for the classification of digital aerial images, which, with the aid of object-based classification and the Normalized Difference Vegetation Index (NDVI), can quantify agricultural areas, by using algorithms of expert classification, with the aim of improving the final results of thematic classifications. QuickBird satellite images and data of 2532 plots in Hinojosa del Duque, Spain, were used to validate the different classifications, obtaining an overall classification accuracy of 91.9% and an excellent Kappa statistic (87.6%) for the algorithm of expert classification.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.69 n.3 20092009-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392009000300013en10.4067/S0718-58392009000300013
institution Scielo Chile
collection Scielo Chile
language English
topic expert classification
vegetation index
land cover
object-based classification
spellingShingle expert classification
vegetation index
land cover
object-based classification
Perea,Alberto Jesús
Meroño,José Emilio
Aguilera,María Jesús
Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
description The objective of this paper was the development of a methodology for the classification of digital aerial images, which, with the aid of object-based classification and the Normalized Difference Vegetation Index (NDVI), can quantify agricultural areas, by using algorithms of expert classification, with the aim of improving the final results of thematic classifications. QuickBird satellite images and data of 2532 plots in Hinojosa del Duque, Spain, were used to validate the different classifications, obtaining an overall classification accuracy of 91.9% and an excellent Kappa statistic (87.6%) for the algorithm of expert classification.
author Perea,Alberto Jesús
Meroño,José Emilio
Aguilera,María Jesús
author_facet Perea,Alberto Jesús
Meroño,José Emilio
Aguilera,María Jesús
author_sort Perea,Alberto Jesús
title Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
title_short Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
title_full Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
title_fullStr Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
title_full_unstemmed Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
title_sort algorithms of expert classification applied in quickbird satellite images for land use mapping
publisher Instituto de Investigaciones Agropecuarias, INIA
publishDate 2009
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392009000300013
work_keys_str_mv AT pereaalbertojesus algorithmsofexpertclassificationappliedinquickbirdsatelliteimagesforlandusemapping
AT meronojoseemilio algorithmsofexpertclassificationappliedinquickbirdsatelliteimagesforlandusemapping
AT aguileramariajesus algorithmsofexpertclassificationappliedinquickbirdsatelliteimagesforlandusemapping
_version_ 1714205272704024576