Algorithms of Expert Classification Applied in Quickbird Satellite Images for Land Use Mapping
The objective of this paper was the development of a methodology for the classification of digital aerial images, which, with the aid of object-based classification and the Normalized Difference Vegetation Index (NDVI), can quantify agricultural areas, by using algorithms of expert classification, w...
Guardado en:
Autores principales: | Perea,Alberto Jesús, Meroño,José Emilio, Aguilera,María Jesús |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2009
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392009000300013 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving the Accuracy of Land Cover Mapping by Distributing Training Samples
por: Chenxi Li, et al.
Publicado: (2021) -
Transferable Deep Learning from Time Series of Landsat Data for National Land-Cover Mapping with Noisy Labels: A Case Study of China
por: Xuemei Zhao, et al.
Publicado: (2021) -
Mapping forest age and characterizing vegetation structure and species composition in tropical dry forests
por: G. Reyes-Palomeque, et al.
Publicado: (2021) -
A Learning Objective Controllable Sphere-Based Method for Balanced and Imbalanced Data Classification
por: Yeontark Park, et al.
Publicado: (2021) -
Extracting Fractional Vegetation Cover from Digital Photographs: A Comparison of In Situ, SamplePoint, and Image Classification Methods
por: Xiaolei Yu, et al.
Publicado: (2021)