Temporal and spatial variability of structure dependent properties of a volcanic ash soil under pasture in southern Chile
Prairies are a main source for livestock feeding in southern Chile. The aim of this research was to define how grazing events and natural wetting and drying cycles (WD) affect the spatial and temporal variability of the soil’s structural properties. The investigation was conducted in a Dur...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2011
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392011000200015 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Prairies are a main source for livestock feeding in southern Chile. The aim of this research was to define how grazing events and natural wetting and drying cycles (WD) affect the spatial and temporal variability of the soil’s structural properties. The investigation was conducted in a Duric Hapludand, Valdivia Series. Penetration resistance (PR) and volumetric water content (WC), measured in situ, were used to prepare maps which show i) temporal (1383 to 3047 kPa for 46 to 16% WC) and spatial changes, and ii) grazing events as an important factor influencing spatial changes in PR (differences of 3421 kPa between max and min values). Grazing and WD cycles induced changes in the soil’s mechanical stability and pore functions, which indicate that structure-dependent properties are dynamic. During the study, variations between 0.3 and 0.9 log µm² were detected for air permeability (k a), whereas air capacity (ACp) ranged between 5 and 18%. Soil mechanical strength also varied over time and showed changes in PR. The same instrument, however, cannot be used to identify changes in soil pore functions. Generally, after grazing events, soil deformation induced a reduction of air capacity and permeability; however, after WD cycles, soil pores were able to recover their functional integrity. |
---|