Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil
Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV) is a major green manure of rice (Oryza sativa L.) fields in southern China, which is recommended as an important agronomic practice to improve s...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2015
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392015000500015 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-58392015000500015 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-583920150005000152018-10-01Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soilFang,YuYan,Zhi-LeiChen,Ji-ChenWang,FeiWang,Ming-KuangLin,Xin-Jian Abundance ammonia-oxidizing archaea (AOA) ammonia-oxidizing bacteria (AOB) Astragalus sinicus community structure Chinese milk vetch soil chemical properties Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV) is a major green manure of rice (Oryza sativa L.) fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK); 100% chemical fertilizer (NPK); 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1); 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2); 18 000 kg MV ha-1 alone (MV); and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS). Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8) amoA gene copies g-1) and the lowest abundance was recorded in the CK treatment (3.21 x 10(7) amoA gene copies g-1). The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE) bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.75 n.4 20152015-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392015000500015en10.4067/S0718-58392015000500015 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Abundance ammonia-oxidizing archaea (AOA) ammonia-oxidizing bacteria (AOB) Astragalus sinicus community structure Chinese milk vetch soil chemical properties |
spellingShingle |
Abundance ammonia-oxidizing archaea (AOA) ammonia-oxidizing bacteria (AOB) Astragalus sinicus community structure Chinese milk vetch soil chemical properties Fang,Yu Yan,Zhi-Lei Chen,Ji-Chen Wang,Fei Wang,Ming-Kuang Lin,Xin-Jian Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
description |
Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV) is a major green manure of rice (Oryza sativa L.) fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK); 100% chemical fertilizer (NPK); 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1); 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2); 18 000 kg MV ha-1 alone (MV); and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS). Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8) amoA gene copies g-1) and the lowest abundance was recorded in the CK treatment (3.21 x 10(7) amoA gene copies g-1). The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE) bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil. |
author |
Fang,Yu Yan,Zhi-Lei Chen,Ji-Chen Wang,Fei Wang,Ming-Kuang Lin,Xin-Jian |
author_facet |
Fang,Yu Yan,Zhi-Lei Chen,Ji-Chen Wang,Fei Wang,Ming-Kuang Lin,Xin-Jian |
author_sort |
Fang,Yu |
title |
Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
title_short |
Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
title_full |
Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
title_fullStr |
Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
title_full_unstemmed |
Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
title_sort |
effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil |
publisher |
Instituto de Investigaciones Agropecuarias, INIA |
publishDate |
2015 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392015000500015 |
work_keys_str_mv |
AT fangyu effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil AT yanzhilei effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil AT chenjichen effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil AT wangfei effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil AT wangmingkuang effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil AT linxinjian effectofchemicalfertilizationandgreenmanureontheabundanceandcommunitystructureofammoniaoxidizersinapaddysoil |
_version_ |
1714205354476175360 |