Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China
ABSTRACT Redroot pigweed (Amaranthus retroflexus L.) is a troublesome weed infesting soybean (Glycine max [L.] Merr.) productions in China. One redroot pigweed population, collected from Heilongjiang (HLJ) Province, China, was suspected to be resistant to thifensulfuron-methyl and fomesafen. The oth...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2017
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392017000400311 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-58392017000400311 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-583920170004003112018-01-30Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from ChinaWang,HengzhiGuo,WenleiZhang,LeleZhao,KongpingGe,LuanLv,XueshenLiu,WeitangWang,Jinxin Acetolactate synthase gene mutation protoporphyrinogen oxidase multiple resistance. ABSTRACT Redroot pigweed (Amaranthus retroflexus L.) is a troublesome weed infesting soybean (Glycine max [L.] Merr.) productions in China. One redroot pigweed population, collected from Heilongjiang (HLJ) Province, China, was suspected to be resistant to thifensulfuron-methyl and fomesafen. The other one redroot pigweed population, collected from Shandong (SD) Province, was susceptible. The study aimed to characterize the level of thifensulfuron-methyl and fomesafen resistance using HLJ population and identify the potential resistance mechanisms to thifensulfuron-methyl. The sensitivity to other herbicides with and without the same target site was also evaluated. Acetolactate synthase (ALS) gene sequencing revealed that Trp574Leu or Ala205Val amino acid substitution were present in the HLJ population. Whole-plant herbicide bioassays showed that, compared with SD population, HLJ population displayed high level of resistance to thifensulfuron-methyl and moderate resistance to fomesafen. The 50% growth reduction (GR50) value of thifensulfuron-methyl with malathion pretreatment was reduced by 23%, suggesting that both target-site resistance and non-target-site resistance mechanisms were present in thifensulfuron-methyl resistance of redroot pigweed. Cross-resistant patterns showed that the HLJ population evolved resistance to pyrithiobac-sodium, pyroxsulam, imazethapyr and fluoroglycofen, but susceptible to bentazone.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.77 n.4 20172017-01-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392017000400311en10.4067/S0718-58392017000400311 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Acetolactate synthase gene mutation protoporphyrinogen oxidase multiple resistance. |
spellingShingle |
Acetolactate synthase gene mutation protoporphyrinogen oxidase multiple resistance. Wang,Hengzhi Guo,Wenlei Zhang,Lele Zhao,Kongping Ge,Luan Lv,Xueshen Liu,Weitang Wang,Jinxin Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
description |
ABSTRACT Redroot pigweed (Amaranthus retroflexus L.) is a troublesome weed infesting soybean (Glycine max [L.] Merr.) productions in China. One redroot pigweed population, collected from Heilongjiang (HLJ) Province, China, was suspected to be resistant to thifensulfuron-methyl and fomesafen. The other one redroot pigweed population, collected from Shandong (SD) Province, was susceptible. The study aimed to characterize the level of thifensulfuron-methyl and fomesafen resistance using HLJ population and identify the potential resistance mechanisms to thifensulfuron-methyl. The sensitivity to other herbicides with and without the same target site was also evaluated. Acetolactate synthase (ALS) gene sequencing revealed that Trp574Leu or Ala205Val amino acid substitution were present in the HLJ population. Whole-plant herbicide bioassays showed that, compared with SD population, HLJ population displayed high level of resistance to thifensulfuron-methyl and moderate resistance to fomesafen. The 50% growth reduction (GR50) value of thifensulfuron-methyl with malathion pretreatment was reduced by 23%, suggesting that both target-site resistance and non-target-site resistance mechanisms were present in thifensulfuron-methyl resistance of redroot pigweed. Cross-resistant patterns showed that the HLJ population evolved resistance to pyrithiobac-sodium, pyroxsulam, imazethapyr and fluoroglycofen, but susceptible to bentazone. |
author |
Wang,Hengzhi Guo,Wenlei Zhang,Lele Zhao,Kongping Ge,Luan Lv,Xueshen Liu,Weitang Wang,Jinxin |
author_facet |
Wang,Hengzhi Guo,Wenlei Zhang,Lele Zhao,Kongping Ge,Luan Lv,Xueshen Liu,Weitang Wang,Jinxin |
author_sort |
Wang,Hengzhi |
title |
Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
title_short |
Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
title_full |
Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
title_fullStr |
Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
title_full_unstemmed |
Multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( Amaranthus retroflexus L.) from China |
title_sort |
multiple resistance to thifensulfuron-methyl and fomesafen in redroot pigweed ( amaranthus retroflexus l.) from china |
publisher |
Instituto de Investigaciones Agropecuarias, INIA |
publishDate |
2017 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392017000400311 |
work_keys_str_mv |
AT wanghengzhi multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT guowenlei multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT zhanglele multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT zhaokongping multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT geluan multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT lvxueshen multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT liuweitang multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina AT wangjinxin multipleresistancetothifensulfuronmethylandfomesafeninredrootpigweedamaranthusretroflexuslfromchina |
_version_ |
1714205372090155008 |