Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast
ABSTRACT Predicting future climatic events is one of the key issues in many fields, whether in scientific or industrial areas. An artificial neural network (ANN) model, based on a backpropagation type, was developed in this study to predict the minimum air temperature of the following day from meteo...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000300327 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-58392018000300327 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-583920180003003272018-11-14Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecastFuentes,MarcelCampos,CristóbalGarcía-Loyola,Sebastián Artificial neural network (ANN) frost detection next day forecasting ABSTRACT Predicting future climatic events is one of the key issues in many fields, whether in scientific or industrial areas. An artificial neural network (ANN) model, based on a backpropagation type, was developed in this study to predict the minimum air temperature of the following day from meteorological data using air temperature, relative humidity, radiation, precipitation, and wind direction and speed to detect the occurrence of radiative frost events. The configuration of the next day ANN prediction system allows operating with low-power computing machines; it is able to generate early warnings that can lead to the development of effective strategies to reduce crop damage, lower quality, and losses in agricultural production. This paper presents a procedural approach to an ANN, which was trained, validated, and tested in 10 meteorological stations in central Chile for approximately 8 yr (2010-2017). The overall mean results were classified by a confusion matrix and showed good performance in predicting minimum temperature with a mean square error (MSE) of 2.99 °C for the network, 1.71 °C for training, 1.77 °C for validation, and 1.74 °C for the testing processes. Frost detection results had an appropriate 98% overall mean accuracy (ACC), 86% sensitivity (TPR), and 2% error rate (ER). Differences and errors in frost detection can be attributed to several factors that are mainly associated with the accuracy of the sensors meteorological stations, local climatic and geographic conditions, and the number of parameters that enter in the ANN training processes.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.78 n.3 20182018-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000300327en10.4067/S0718-58392018000300327 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Artificial neural network (ANN) frost detection next day forecasting |
spellingShingle |
Artificial neural network (ANN) frost detection next day forecasting Fuentes,Marcel Campos,Cristóbal García-Loyola,Sebastián Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
description |
ABSTRACT Predicting future climatic events is one of the key issues in many fields, whether in scientific or industrial areas. An artificial neural network (ANN) model, based on a backpropagation type, was developed in this study to predict the minimum air temperature of the following day from meteorological data using air temperature, relative humidity, radiation, precipitation, and wind direction and speed to detect the occurrence of radiative frost events. The configuration of the next day ANN prediction system allows operating with low-power computing machines; it is able to generate early warnings that can lead to the development of effective strategies to reduce crop damage, lower quality, and losses in agricultural production. This paper presents a procedural approach to an ANN, which was trained, validated, and tested in 10 meteorological stations in central Chile for approximately 8 yr (2010-2017). The overall mean results were classified by a confusion matrix and showed good performance in predicting minimum temperature with a mean square error (MSE) of 2.99 °C for the network, 1.71 °C for training, 1.77 °C for validation, and 1.74 °C for the testing processes. Frost detection results had an appropriate 98% overall mean accuracy (ACC), 86% sensitivity (TPR), and 2% error rate (ER). Differences and errors in frost detection can be attributed to several factors that are mainly associated with the accuracy of the sensors meteorological stations, local climatic and geographic conditions, and the number of parameters that enter in the ANN training processes. |
author |
Fuentes,Marcel Campos,Cristóbal García-Loyola,Sebastián |
author_facet |
Fuentes,Marcel Campos,Cristóbal García-Loyola,Sebastián |
author_sort |
Fuentes,Marcel |
title |
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
title_short |
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
title_full |
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
title_fullStr |
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
title_full_unstemmed |
Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast |
title_sort |
application of artificial neural networks to frost detection in central chile using the next day minimum air temperature forecast |
publisher |
Instituto de Investigaciones Agropecuarias, INIA |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000300327 |
work_keys_str_mv |
AT fuentesmarcel applicationofartificialneuralnetworkstofrostdetectionincentralchileusingthenextdayminimumairtemperatureforecast AT camposcristobal applicationofartificialneuralnetworkstofrostdetectionincentralchileusingthenextdayminimumairtemperatureforecast AT garcialoyolasebastian applicationofartificialneuralnetworkstofrostdetectionincentralchileusingthenextdayminimumairtemperatureforecast |
_version_ |
1714205379514073088 |