Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability
ABSTRACT Sweet-potato (Ipomoea batatas [L.] Lam.) is the 3rd most important root and tuber plant in the world, after potatoes and cassava. The knowledge of the structure of Genotype × Environment interaction (GEI) could assist in the development of cultivars of sweet-potato. The objective of this re...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2018
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000400461 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-58392018000400461 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-583920180004004612018-12-26Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptabilityMustamu,Yohanis AmosTjintokohadi,KokoGrüneberg,Wolfgang J.Karuniawan,AgungRuswandi,Dedi AMMI ASV GGE Ipomoea batatas specific genotype ABSTRACT Sweet-potato (Ipomoea batatas [L.] Lam.) is the 3rd most important root and tuber plant in the world, after potatoes and cassava. The knowledge of the structure of Genotype × Environment interaction (GEI) could assist in the development of cultivars of sweet-potato. The objective of this research was to select superior sweet-potato genotypes in Indonesia based on Finlay-Wilkinson regression, additive main effect and multiplicative interaction (AMMI) analysis, AMMI stability value (ASV), and Genotype plus Genotype × Environment (GGE) biplot methods. Genetic materials evaluated in this research were 10 Indonesian superior genotypes developed by the Plant Breeding and Seed Technology Lab., Faculty of Agriculture, University of Padjadjaran, Bandung. The research was arranged in randomized block design, with 16 genotypes as treatments. Data analysis of the yield characters was performed by using combined variance analysis: Finlay-Wilkinson regression, ASV, AMMI, and GGE Biplot. The GEI significantly influenced the tested genotypes at three sites. However, they did not show any significant differences in the GEI. Ayamurasaki, Beniazuma, Awachy2, 15(112), Awachy4, Awachy5, 80(109), 54(160), 35(180) were specific adaptation genotypes of marginal land based on Finlay-Wilkinson analysis; whereas, Rancing, AC Putih, Ayamurasaki, Naruto Kinotoki, Awachy1, Awachy2, 15(112), Awachy4, 57(97), 80(109), 54(160), 68(120) and 35(180) performed as stable genotypes based on ASV. Ayamurasaki, Naruto Kinotoki, Awachy1, Awachy2, 57(97), 80(109) and 68(120) were stable genotypes based on AMMI analysis. However, based on GGE Biplot analysis Ayamurasaki, Awachy1, 80 (109) and 68 (120) were stable genotypes. ASV analysis provided effective stable genotype selections of 87.50% greater than other stability methods. Ayamurasaki, Awachy1, 80(109) and 68(120) were stable genotypes based on AMMI, ASV, and GGE biplot analysis.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.78 n.4 20182018-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000400461en10.4067/S0718-58392018000400461 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
AMMI ASV GGE Ipomoea batatas specific genotype |
spellingShingle |
AMMI ASV GGE Ipomoea batatas specific genotype Mustamu,Yohanis Amos Tjintokohadi,Koko Grüneberg,Wolfgang J. Karuniawan,Agung Ruswandi,Dedi Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
description |
ABSTRACT Sweet-potato (Ipomoea batatas [L.] Lam.) is the 3rd most important root and tuber plant in the world, after potatoes and cassava. The knowledge of the structure of Genotype × Environment interaction (GEI) could assist in the development of cultivars of sweet-potato. The objective of this research was to select superior sweet-potato genotypes in Indonesia based on Finlay-Wilkinson regression, additive main effect and multiplicative interaction (AMMI) analysis, AMMI stability value (ASV), and Genotype plus Genotype × Environment (GGE) biplot methods. Genetic materials evaluated in this research were 10 Indonesian superior genotypes developed by the Plant Breeding and Seed Technology Lab., Faculty of Agriculture, University of Padjadjaran, Bandung. The research was arranged in randomized block design, with 16 genotypes as treatments. Data analysis of the yield characters was performed by using combined variance analysis: Finlay-Wilkinson regression, ASV, AMMI, and GGE Biplot. The GEI significantly influenced the tested genotypes at three sites. However, they did not show any significant differences in the GEI. Ayamurasaki, Beniazuma, Awachy2, 15(112), Awachy4, Awachy5, 80(109), 54(160), 35(180) were specific adaptation genotypes of marginal land based on Finlay-Wilkinson analysis; whereas, Rancing, AC Putih, Ayamurasaki, Naruto Kinotoki, Awachy1, Awachy2, 15(112), Awachy4, 57(97), 80(109), 54(160), 68(120) and 35(180) performed as stable genotypes based on ASV. Ayamurasaki, Naruto Kinotoki, Awachy1, Awachy2, 57(97), 80(109) and 68(120) were stable genotypes based on AMMI analysis. However, based on GGE Biplot analysis Ayamurasaki, Awachy1, 80 (109) and 68 (120) were stable genotypes. ASV analysis provided effective stable genotype selections of 87.50% greater than other stability methods. Ayamurasaki, Awachy1, 80(109) and 68(120) were stable genotypes based on AMMI, ASV, and GGE biplot analysis. |
author |
Mustamu,Yohanis Amos Tjintokohadi,Koko Grüneberg,Wolfgang J. Karuniawan,Agung Ruswandi,Dedi |
author_facet |
Mustamu,Yohanis Amos Tjintokohadi,Koko Grüneberg,Wolfgang J. Karuniawan,Agung Ruswandi,Dedi |
author_sort |
Mustamu,Yohanis Amos |
title |
Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
title_short |
Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
title_full |
Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
title_fullStr |
Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
title_full_unstemmed |
Selection of superior genotype of sweet-potato in Indonesia based on stability and adaptability |
title_sort |
selection of superior genotype of sweet-potato in indonesia based on stability and adaptability |
publisher |
Instituto de Investigaciones Agropecuarias, INIA |
publishDate |
2018 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392018000400461 |
work_keys_str_mv |
AT mustamuyohanisamos selectionofsuperiorgenotypeofsweetpotatoinindonesiabasedonstabilityandadaptability AT tjintokohadikoko selectionofsuperiorgenotypeofsweetpotatoinindonesiabasedonstabilityandadaptability AT grunebergwolfgangj selectionofsuperiorgenotypeofsweetpotatoinindonesiabasedonstabilityandadaptability AT karuniawanagung selectionofsuperiorgenotypeofsweetpotatoinindonesiabasedonstabilityandadaptability AT ruswandidedi selectionofsuperiorgenotypeofsweetpotatoinindonesiabasedonstabilityandadaptability |
_version_ |
1714205381651070976 |