Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants
ABSTRACT The Trichoderma harzianum fungus is one of the most widely used biological control agents in agriculture. A new T. harzianum THITR01 strain was isolated and their spores were mutagenized with ethyl methane sulfonate obtaining 174 mutants. M7, M14, M21 and M24 are mutant strains that showed...
Guardado en:
Autores principales: | , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Instituto de Investigaciones Agropecuarias, INIA
2021
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392021000300270 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-58392021000300270 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-583920210003002702021-08-16Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plantsCañada-Coyote,ErikaRamírez-Pimentel,Juan GabrielAguirre-Mancilla,César LeobardoRaya-Pérez,Juan CarlosAcosta-García,GerardoIturriaga,Gabriel Abiotic stress fungi mutants phosphorus Trichoderma ABSTRACT The Trichoderma harzianum fungus is one of the most widely used biological control agents in agriculture. A new T. harzianum THITR01 strain was isolated and their spores were mutagenized with ethyl methane sulfonate obtaining 174 mutants. M7, M14, M21 and M24 are mutant strains that showed 97.4%-100% antagonist effect against Sclerotium rolfsii, Rhizoctonia solani and Sclerotinia sclerotiorum compared to the wild strain. Under potato dextrose agar (PDA) medium with either NaCl, sorbitol or NaHCO3 there were nonsignificant growth rate differences between the mutants and the wild strain. M14 and M21 mutant strains were inoculated on ‘Jalapeño’ pepper plants (Capsicum annuum L. var. annuum) with unavailable P promoted a significant increase in root fresh weight (54% and 40%, respectively) and dry weight (28% in both strains), compared to plant inoculation with the wild strain. The M14 strain presented the highest P solubilization ability (13.4 μg g-1) in the substrate and promoted a change on root architecture. There was a higher relative water content (82.9%) in drought stressed plants inoculated with the M24 mutant than in plants that were inoculated with the wild type strain (76.3%), and also higher levels of proline in chili pepper plants inoculated with the M24 mutant (939.5 μg g-1 dry weight) than in plants inoculated with the wild type strain (419.8 μg g-1 dry weight). Therefore, M14, M21 and M24 mutant strains could potentially be used as biocontrol agents and plant protector from abiotic stress.info:eu-repo/semantics/openAccessInstituto de Investigaciones Agropecuarias, INIAChilean journal of agricultural research v.81 n.3 20212021-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392021000300270en10.4067/S0718-58392021000300270 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Abiotic stress fungi mutants phosphorus Trichoderma |
spellingShingle |
Abiotic stress fungi mutants phosphorus Trichoderma Cañada-Coyote,Erika Ramírez-Pimentel,Juan Gabriel Aguirre-Mancilla,César Leobardo Raya-Pérez,Juan Carlos Acosta-García,Gerardo Iturriaga,Gabriel Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
description |
ABSTRACT The Trichoderma harzianum fungus is one of the most widely used biological control agents in agriculture. A new T. harzianum THITR01 strain was isolated and their spores were mutagenized with ethyl methane sulfonate obtaining 174 mutants. M7, M14, M21 and M24 are mutant strains that showed 97.4%-100% antagonist effect against Sclerotium rolfsii, Rhizoctonia solani and Sclerotinia sclerotiorum compared to the wild strain. Under potato dextrose agar (PDA) medium with either NaCl, sorbitol or NaHCO3 there were nonsignificant growth rate differences between the mutants and the wild strain. M14 and M21 mutant strains were inoculated on ‘Jalapeño’ pepper plants (Capsicum annuum L. var. annuum) with unavailable P promoted a significant increase in root fresh weight (54% and 40%, respectively) and dry weight (28% in both strains), compared to plant inoculation with the wild strain. The M14 strain presented the highest P solubilization ability (13.4 μg g-1) in the substrate and promoted a change on root architecture. There was a higher relative water content (82.9%) in drought stressed plants inoculated with the M24 mutant than in plants that were inoculated with the wild type strain (76.3%), and also higher levels of proline in chili pepper plants inoculated with the M24 mutant (939.5 μg g-1 dry weight) than in plants inoculated with the wild type strain (419.8 μg g-1 dry weight). Therefore, M14, M21 and M24 mutant strains could potentially be used as biocontrol agents and plant protector from abiotic stress. |
author |
Cañada-Coyote,Erika Ramírez-Pimentel,Juan Gabriel Aguirre-Mancilla,César Leobardo Raya-Pérez,Juan Carlos Acosta-García,Gerardo Iturriaga,Gabriel |
author_facet |
Cañada-Coyote,Erika Ramírez-Pimentel,Juan Gabriel Aguirre-Mancilla,César Leobardo Raya-Pérez,Juan Carlos Acosta-García,Gerardo Iturriaga,Gabriel |
author_sort |
Cañada-Coyote,Erika |
title |
Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
title_short |
Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
title_full |
Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
title_fullStr |
Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
title_full_unstemmed |
Trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in Jalapeño pepper plants |
title_sort |
trichoderma harzianum mutants enhance antagonism against phytopathogenic fungi, phosphorus assimilation and drought tolerance in jalapeño pepper plants |
publisher |
Instituto de Investigaciones Agropecuarias, INIA |
publishDate |
2021 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392021000300270 |
work_keys_str_mv |
AT canadacoyoteerika trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants AT ramirezpimenteljuangabriel trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants AT aguirremancillacesarleobardo trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants AT rayaperezjuancarlos trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants AT acostagarciagerardo trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants AT iturriagagabriel trichodermaharzianummutantsenhanceantagonismagainstphytopathogenicfungiphosphorusassimilationanddroughttoleranceinjalapenopepperplants |
_version_ |
1714205410988130304 |