Experimental and numerical analysis of triaxial compression test for a clay soil

ABSTRACT Soil compaction causes negative effects on crop yield and its mechanical response analysis has recently gained relevance for research through numerical methods. In this work, Finite Element Method (FEM) using the Mohr-Coulomb (MC) and Hardening Soil (HS) constitutive models were employed to...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hernández-Hernández,Víctor A., Joya-Cárdenas,Diego R., Equihua-Anguiano,Luisa N., Leal-Vaca,Julio C., Peña,José A. Diosdado-De la, Pérez-Moreno,Luis, Saldaña-Robles,Noé, Saldaña-Robles,Alberto
Lenguaje:English
Publicado: Instituto de Investigaciones Agropecuarias, INIA 2021
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-58392021000300357
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Soil compaction causes negative effects on crop yield and its mechanical response analysis has recently gained relevance for research through numerical methods. In this work, Finite Element Method (FEM) using the Mohr-Coulomb (MC) and Hardening Soil (HS) constitutive models were employed to simulate the mechanical response of a Vertisol agricultural soil. First, an experimental study of the unconsolidated-undrained (UU) triaxial compression test with different moisture contents (w = 10%, 20% and 34%) and confining pressures (σ3 = σc = 0.05 MPa, 0.10 MPa and 0.15 MPa) was carried out, to obtain the shear strength parameters cohesion (c) and friction angle (φ), as well as the Young’s modulus (E) of the soil. The experimental study was conducted through a 32 factorial design with three replicates that it was used to evaluate the influence of the w and σc on E of the studied soil. Also, an analysis of the behavior of the φ and c parameters at each w was performed. Numerical simulations were done with similar conditions as the experimental tests with respect to loading and boundary conditions. A comparison of the mechanical response between numerical results and physical experiments was carried out. As a result, the MC model allowed to estimate satisfactorily the stress-strain relationship of the soil for w of 10% and 20%, while HS model exhibited a better approximation for w of 34% in comparison with the MC model. Finally, the methodology and the adjusted parameters of the agricultural soil obtained in this work, can be used in the study of soil compaction produced by the agricultural machinery.