Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere

Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8) show a pronounced slip maximum of 15-20 m offshore Iloca (~35°S), indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Moscoso,Eduardo, Contreras-Reyes,Eduardo
Lenguaje:English
Publicado: Servicio Nacional de Geología y Minería (SERNAGEOMIN) 2012
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062012000300012
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-71062012000300012
record_format dspace
spelling oai:scielo:S0718-710620120003000122012-11-15Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphereMoscoso,EduardoContreras-Reyes,Eduardo Nazca plate hydration Outer Rise Maule earthquake Seismic cycle Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8) show a pronounced slip maximum of 15-20 m offshore Iloca (~35°S), indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m appears south of the epicenter west of the Arauco Peninsula. During the first weeks following the main shock and seaward of the main slip maximum, an outer rise seismic cluster of >450 events, mainly extensional, with magnitudes Mw=4-6 was formed. In contrast, the outer rise located seaward of the secondary slip maximum presents little seismicity. This observation suggests that outer rise seismicity following the Maule earthquake is strongly correlated with the heterogeneous coseismic slip distribution of the main megathrust event. In particular, the formation of the outer-rise seismic cluster in the north, which spatially correlates with the main maximum slip, is likely linked to strong extensional stresses transfered from the large slip of the subducting oceanic plate. In addition, high resolution bathymetric data reveals that bending-related faulting is more intense seaward of the main maximum slip, where well developed extensional faults strike parallel to the trench axis. Also published seismic constraints reveal reduced P-wave velocities in the uppermost mantle at the trench-outer rise region (7.5-7.8 km/s), which suggest serpentinization of the uppermost mantle. Seawater percolation up to mantle depths is likely driven by bending related-faulting at the outer rise. Water percolation into the upper mantle is expected to be more efficient during the co-seismic and early post-seismic periods of large megathrust earthquakes when intense extensional faulting of the oceanic lithosphere facilitates water infiltration seaward of the trench.info:eu-repo/semantics/openAccessServicio Nacional de Geología y Minería (SERNAGEOMIN)Andean geology v.39 n.3 20122012-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062012000300012en10.5027/andgeoV39n3-a12
institution Scielo Chile
collection Scielo Chile
language English
topic Nazca plate hydration
Outer Rise
Maule earthquake
Seismic cycle
spellingShingle Nazca plate hydration
Outer Rise
Maule earthquake
Seismic cycle
Moscoso,Eduardo
Contreras-Reyes,Eduardo
Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
description Most of the recent published geodetic models of the 2010 Maule, Chile mega-thrust earthquake (Mw=8.8) show a pronounced slip maximum of 15-20 m offshore Iloca (~35°S), indicating that co-seismic slip was largest north of the epicenter of the earthquake rupture area. A secondary slip maximum 8-10 m appears south of the epicenter west of the Arauco Peninsula. During the first weeks following the main shock and seaward of the main slip maximum, an outer rise seismic cluster of >450 events, mainly extensional, with magnitudes Mw=4-6 was formed. In contrast, the outer rise located seaward of the secondary slip maximum presents little seismicity. This observation suggests that outer rise seismicity following the Maule earthquake is strongly correlated with the heterogeneous coseismic slip distribution of the main megathrust event. In particular, the formation of the outer-rise seismic cluster in the north, which spatially correlates with the main maximum slip, is likely linked to strong extensional stresses transfered from the large slip of the subducting oceanic plate. In addition, high resolution bathymetric data reveals that bending-related faulting is more intense seaward of the main maximum slip, where well developed extensional faults strike parallel to the trench axis. Also published seismic constraints reveal reduced P-wave velocities in the uppermost mantle at the trench-outer rise region (7.5-7.8 km/s), which suggest serpentinization of the uppermost mantle. Seawater percolation up to mantle depths is likely driven by bending related-faulting at the outer rise. Water percolation into the upper mantle is expected to be more efficient during the co-seismic and early post-seismic periods of large megathrust earthquakes when intense extensional faulting of the oceanic lithosphere facilitates water infiltration seaward of the trench.
author Moscoso,Eduardo
Contreras-Reyes,Eduardo
author_facet Moscoso,Eduardo
Contreras-Reyes,Eduardo
author_sort Moscoso,Eduardo
title Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
title_short Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
title_full Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
title_fullStr Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
title_full_unstemmed Outer rise seismicity related to the Maule, Chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
title_sort outer rise seismicity related to the maule, chile 2010 megathrust earthquake and hydration of the incoming oceanic lithosphere
publisher Servicio Nacional de Geología y Minería (SERNAGEOMIN)
publishDate 2012
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062012000300012
work_keys_str_mv AT moscosoeduardo outerriseseismicityrelatedtothemaulechile2010megathrustearthquakeandhydrationoftheincomingoceaniclithosphere
AT contrerasreyeseduardo outerriseseismicityrelatedtothemaulechile2010megathrustearthquakeandhydrationoftheincomingoceaniclithosphere
_version_ 1714205837878099968