Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)

ABSTRACT We present here a reconstruction of the post late Miocene landscape evolution of the western slope of the Andean Cordillera Principal near 34°20’ S. We base our analysis on the available geological information, a morphological characterization of the landform assemblages in the Ca...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Charrier,Reynaldo, Iturrizaga,Lasafam, Carretier,Sébastien, Regard,Vincent
Lenguaje:English
Publicado: Servicio Nacional de Geología y Minería (SERNAGEOMIN) 2019
Materias:
LGM
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062019000200240
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-71062019000200240
record_format dspace
spelling oai:scielo:S0718-710620190002002402019-08-02Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)Charrier,ReynaldoIturrizaga,LasafamCarretier,SébastienRegard,Vincent Post-Miocene landscape evolution 10Be exposure ages LGM Younger Dryas Cachapoal drainage basin Principal Cordillera Central Andes Chile ABSTRACT We present here a reconstruction of the post late Miocene landscape evolution of the western slope of the Andean Cordillera Principal near 34°20’ S. We base our analysis on the available geological information, a morphological characterization of the landform assemblages in the Cachapoal and southern Maipo catchments, and the first 10Be exposure ages for moraines in this area. The Cachapoal drainage basin is characterized by a variety of morphological features, like an elevated low-relief surface, volcanoes and lava flows on valley slopes, U-shaped valley sections, roches moutonnées, and large glaciated areas. Different kinds of deposits have been included in the study, such as moraines, lacustrine and landslide deposits, and a well-developed system of fluvial terraces in the more distal part of the Cachapoal catchment. Landslides are mostly developed on rocks of the late Eocene-early Miocene Abanico Formation. and are less frequent in outcrops of the overlying, early to middle Miocene Farellones Formation. We estimate that the lowest end moraine in the Cachapoal catchment is located next to the locality Bocatoma Chacayes (∼950 m altitude), though covered by a major landslide. No evidence exist for glacial deposits further down stream in this region. Lateral moraine ridges of the Cachapoal Glacier at Los Cerrillos yielded 10Be exposure ages of 20.3±2.9 and 21.9±5.3 ka that indicate they are associated with the Last Glacial Maximum (LGM). Holocene moraines exist next to all glacier tongues. Of particular interest in this region is the 12 km-long debris-covered Cachapoal Glacier, the longest valley glacier in the central Chilean Andes, and its distal and proximal moraine deposits. Two lateral moraines adjacent to the present-day Cachapoal Glacier yielded exposure average ages of 13.5±2.4 ka for the external ridge, indicating the Younger Dryas, and 3.8±0.8 ka for the internal ridge, an age that coincides with the 4.2 ka global climatic event that marks the beginning of the Meghalayan Age, at the end of the Holocene. The large size of this moraine on both sides of the ice tongue indicates the great development of the glacier at that time. Some of these ages coincide with ages obtained further north in the Maipo drainage basin, at the latitude of Santiago, and in the eastern flank of the cordillera, however, no pre-LGM deposits were found here, unlike the other mentioned regions. This difference together with the much lower altitude of the LGM moraine deposits in the study region suggests that the Cachapoal catchment is a transition zone to a more humid region further south, and indicates the great need for further reconnaissance and dating of glacial deposits in this Andean region. Our analysis of the geomorphological evolution is consistent with incision start for the Cachapoal Valley in latest Miocene. In this process, glacier incision was apparently not much effective until mid-Pleistocene time, when volcanism was active in the higher regions of the mountain range covering areas not yet incised, whereas in the western Principal Cordillera lavas flowed in deeply incised valleys. Pleistocene glaciers deepened and shaped the already incised valleys, which are presently mostly occupied by rivers.info:eu-repo/semantics/openAccessServicio Nacional de Geología y Minería (SERNAGEOMIN)Andean geology v.46 n.2 20192019-05-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062019000200240en10.5027/andgeov46n2-3108
institution Scielo Chile
collection Scielo Chile
language English
topic Post-Miocene landscape evolution
10Be exposure ages
LGM
Younger Dryas
Cachapoal drainage basin
Principal Cordillera
Central Andes
Chile
spellingShingle Post-Miocene landscape evolution
10Be exposure ages
LGM
Younger Dryas
Cachapoal drainage basin
Principal Cordillera
Central Andes
Chile
Charrier,Reynaldo
Iturrizaga,Lasafam
Carretier,Sébastien
Regard,Vincent
Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
description ABSTRACT We present here a reconstruction of the post late Miocene landscape evolution of the western slope of the Andean Cordillera Principal near 34°20’ S. We base our analysis on the available geological information, a morphological characterization of the landform assemblages in the Cachapoal and southern Maipo catchments, and the first 10Be exposure ages for moraines in this area. The Cachapoal drainage basin is characterized by a variety of morphological features, like an elevated low-relief surface, volcanoes and lava flows on valley slopes, U-shaped valley sections, roches moutonnées, and large glaciated areas. Different kinds of deposits have been included in the study, such as moraines, lacustrine and landslide deposits, and a well-developed system of fluvial terraces in the more distal part of the Cachapoal catchment. Landslides are mostly developed on rocks of the late Eocene-early Miocene Abanico Formation. and are less frequent in outcrops of the overlying, early to middle Miocene Farellones Formation. We estimate that the lowest end moraine in the Cachapoal catchment is located next to the locality Bocatoma Chacayes (∼950 m altitude), though covered by a major landslide. No evidence exist for glacial deposits further down stream in this region. Lateral moraine ridges of the Cachapoal Glacier at Los Cerrillos yielded 10Be exposure ages of 20.3±2.9 and 21.9±5.3 ka that indicate they are associated with the Last Glacial Maximum (LGM). Holocene moraines exist next to all glacier tongues. Of particular interest in this region is the 12 km-long debris-covered Cachapoal Glacier, the longest valley glacier in the central Chilean Andes, and its distal and proximal moraine deposits. Two lateral moraines adjacent to the present-day Cachapoal Glacier yielded exposure average ages of 13.5±2.4 ka for the external ridge, indicating the Younger Dryas, and 3.8±0.8 ka for the internal ridge, an age that coincides with the 4.2 ka global climatic event that marks the beginning of the Meghalayan Age, at the end of the Holocene. The large size of this moraine on both sides of the ice tongue indicates the great development of the glacier at that time. Some of these ages coincide with ages obtained further north in the Maipo drainage basin, at the latitude of Santiago, and in the eastern flank of the cordillera, however, no pre-LGM deposits were found here, unlike the other mentioned regions. This difference together with the much lower altitude of the LGM moraine deposits in the study region suggests that the Cachapoal catchment is a transition zone to a more humid region further south, and indicates the great need for further reconnaissance and dating of glacial deposits in this Andean region. Our analysis of the geomorphological evolution is consistent with incision start for the Cachapoal Valley in latest Miocene. In this process, glacier incision was apparently not much effective until mid-Pleistocene time, when volcanism was active in the higher regions of the mountain range covering areas not yet incised, whereas in the western Principal Cordillera lavas flowed in deeply incised valleys. Pleistocene glaciers deepened and shaped the already incised valleys, which are presently mostly occupied by rivers.
author Charrier,Reynaldo
Iturrizaga,Lasafam
Carretier,Sébastien
Regard,Vincent
author_facet Charrier,Reynaldo
Iturrizaga,Lasafam
Carretier,Sébastien
Regard,Vincent
author_sort Charrier,Reynaldo
title Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
title_short Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
title_full Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
title_fullStr Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
title_full_unstemmed Geomorphologic and Glacial Evolution of the Cachapoal and southern Maipo catchments in the Andean Principal Cordillera, Central Chile (34°-35° S)
title_sort geomorphologic and glacial evolution of the cachapoal and southern maipo catchments in the andean principal cordillera, central chile (34°-35° s)
publisher Servicio Nacional de Geología y Minería (SERNAGEOMIN)
publishDate 2019
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-71062019000200240
work_keys_str_mv AT charrierreynaldo geomorphologicandglacialevolutionofthecachapoalandsouthernmaipocatchmentsintheandeanprincipalcordilleracentralchile3435s
AT iturrizagalasafam geomorphologicandglacialevolutionofthecachapoalandsouthernmaipocatchmentsintheandeanprincipalcordilleracentralchile3435s
AT carretiersebastien geomorphologicandglacialevolutionofthecachapoalandsouthernmaipocatchmentsintheandeanprincipalcordilleracentralchile3435s
AT regardvincent geomorphologicandglacialevolutionofthecachapoalandsouthernmaipocatchmentsintheandeanprincipalcordilleracentralchile3435s
_version_ 1714205861782487040