DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC?
We test two questions: (i) Is the Bayesian Information Criterion (BIC) more parsimonious thanAkaike Information Criterion (AIC)? and(ii) Is BICbetter than AIC for forecasting purposes? By using simulated data, we provide statistical inference of both hypotheses individually and then jointly with a m...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
ILADES. Universidad Alberto Hurtado.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-88702013000100003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We test two questions: (i) Is the Bayesian Information Criterion (BIC) more parsimonious thanAkaike Information Criterion (AIC)? and(ii) Is BICbetter than AIC for forecasting purposes? By using simulated data, we provide statistical inference of both hypotheses individually and then jointly with a multiple hypotheses testing procedure to control better for type-I error. Both testing procedures deliver the same result: The BIC shows an in- and out-of-sample superiority over AIC only in a long-sample context. |
---|