DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC?
We test two questions: (i) Is the Bayesian Information Criterion (BIC) more parsimonious thanAkaike Information Criterion (AIC)? and(ii) Is BICbetter than AIC for forecasting purposes? By using simulated data, we provide statistical inference of both hypotheses individually and then jointly with a m...
Guardado en:
Autores principales: | , |
---|---|
Lenguaje: | English |
Publicado: |
ILADES. Universidad Alberto Hurtado.
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-88702013000100003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-88702013000100003 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-887020130001000032013-07-23DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC?MEDEL,CARLOS ASALGADO,SERGIO C AIC BIC information criteria time-series models overfitting forecast comparison joint hypothesis testing We test two questions: (i) Is the Bayesian Information Criterion (BIC) more parsimonious thanAkaike Information Criterion (AIC)? and(ii) Is BICbetter than AIC for forecasting purposes? By using simulated data, we provide statistical inference of both hypotheses individually and then jointly with a multiple hypotheses testing procedure to control better for type-I error. Both testing procedures deliver the same result: The BIC shows an in- and out-of-sample superiority over AIC only in a long-sample context.info:eu-repo/semantics/openAccessILADES. Universidad Alberto Hurtado.Revista de análisis económico v.28 n.1 20132013-04-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-88702013000100003en10.4067/S0718-88702013000100003 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
AIC BIC information criteria time-series models overfitting forecast comparison joint hypothesis testing |
spellingShingle |
AIC BIC information criteria time-series models overfitting forecast comparison joint hypothesis testing MEDEL,CARLOS A SALGADO,SERGIO C DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
description |
We test two questions: (i) Is the Bayesian Information Criterion (BIC) more parsimonious thanAkaike Information Criterion (AIC)? and(ii) Is BICbetter than AIC for forecasting purposes? By using simulated data, we provide statistical inference of both hypotheses individually and then jointly with a multiple hypotheses testing procedure to control better for type-I error. Both testing procedures deliver the same result: The BIC shows an in- and out-of-sample superiority over AIC only in a long-sample context. |
author |
MEDEL,CARLOS A SALGADO,SERGIO C |
author_facet |
MEDEL,CARLOS A SALGADO,SERGIO C |
author_sort |
MEDEL,CARLOS A |
title |
DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
title_short |
DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
title_full |
DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
title_fullStr |
DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
title_full_unstemmed |
DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? |
title_sort |
does the bic estimate and forecast better than the aic? |
publisher |
ILADES. Universidad Alberto Hurtado. |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-88702013000100003 |
work_keys_str_mv |
AT medelcarlosa doesthebicestimateandforecastbetterthantheaic AT salgadosergioc doesthebicestimateandforecastbetterthantheaic |
_version_ |
1714206209836318720 |