Bayesian network analysis of accident risk in information-deficient scenarios

Abstract: Analysis of accidents using Bayesian networks links certain predictor factors with other target factors representing types of accidents under study. Databases of real accident reports are typically used for both designing and training networks, which inevitably skews future inferences. Inf...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martín,José Enrique, Taboada-García,Javier, Gerassis,Saki, Saavedra,Ángeles, Martínez-Alegría,Roberto
Lenguaje:English
Publicado: Escuela de Construcción Civil, Pontificia Universidad Católica de Chile 2017
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2017000300439
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:scielo:S0718-915X2017000300439
record_format dspace
spelling oai:scielo:S0718-915X20170003004392018-03-05Bayesian network analysis of accident risk in information-deficient scenariosMartín,José EnriqueTaboada-García,JavierGerassis,SakiSaavedra,ÁngelesMartínez-Alegría,Roberto Civil engineering information deficit Bayesian networks workplace accident model reduction. Abstract: Analysis of accidents using Bayesian networks links certain predictor factors with other target factors representing types of accidents under study. Databases of real accident reports are typically used for both designing and training networks, which inevitably skews future inferences. Inferences are also limited because such databases do not usually include data on situations where accidents have not occurred. Inferences can thus be made about the occurrence of an accident, but not about specific types of accident. We describe a novel Bayesian network strategy for the field of occupational risk prevention which, extracting data from a database that includes situations where no accident has occurred, quantifies the influence and interactions of factors. It also allows particular accident types to be studied individually, thereby highlighting not only the correlation but also the causal relationship between work setting and accident risk.info:eu-repo/semantics/openAccessEscuela de Construcción Civil, Pontificia Universidad Católica de ChileRevista de la construcción v.16 n.3 20172017-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2017000300439en10.7764/rdlc.16.3.439
institution Scielo Chile
collection Scielo Chile
language English
topic Civil engineering
information deficit
Bayesian networks
workplace accident
model reduction.
spellingShingle Civil engineering
information deficit
Bayesian networks
workplace accident
model reduction.
Martín,José Enrique
Taboada-García,Javier
Gerassis,Saki
Saavedra,Ángeles
Martínez-Alegría,Roberto
Bayesian network analysis of accident risk in information-deficient scenarios
description Abstract: Analysis of accidents using Bayesian networks links certain predictor factors with other target factors representing types of accidents under study. Databases of real accident reports are typically used for both designing and training networks, which inevitably skews future inferences. Inferences are also limited because such databases do not usually include data on situations where accidents have not occurred. Inferences can thus be made about the occurrence of an accident, but not about specific types of accident. We describe a novel Bayesian network strategy for the field of occupational risk prevention which, extracting data from a database that includes situations where no accident has occurred, quantifies the influence and interactions of factors. It also allows particular accident types to be studied individually, thereby highlighting not only the correlation but also the causal relationship between work setting and accident risk.
author Martín,José Enrique
Taboada-García,Javier
Gerassis,Saki
Saavedra,Ángeles
Martínez-Alegría,Roberto
author_facet Martín,José Enrique
Taboada-García,Javier
Gerassis,Saki
Saavedra,Ángeles
Martínez-Alegría,Roberto
author_sort Martín,José Enrique
title Bayesian network analysis of accident risk in information-deficient scenarios
title_short Bayesian network analysis of accident risk in information-deficient scenarios
title_full Bayesian network analysis of accident risk in information-deficient scenarios
title_fullStr Bayesian network analysis of accident risk in information-deficient scenarios
title_full_unstemmed Bayesian network analysis of accident risk in information-deficient scenarios
title_sort bayesian network analysis of accident risk in information-deficient scenarios
publisher Escuela de Construcción Civil, Pontificia Universidad Católica de Chile
publishDate 2017
url http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2017000300439
work_keys_str_mv AT martinjoseenrique bayesiannetworkanalysisofaccidentriskininformationdeficientscenarios
AT taboadagarciajavier bayesiannetworkanalysisofaccidentriskininformationdeficientscenarios
AT gerassissaki bayesiannetworkanalysisofaccidentriskininformationdeficientscenarios
AT saavedraangeles bayesiannetworkanalysisofaccidentriskininformationdeficientscenarios
AT martinezalegriaroberto bayesiannetworkanalysisofaccidentriskininformationdeficientscenarios
_version_ 1714206286368735232