Numerical analysis of an elastomeric bearing pad by hyperelastic models
Abstract Elastomeric bearing pads are responsible for transfering loads at the junction between beams and columns of bridges and viaducts, providing restrict freedom of movement in the superstructure. The elastomeric material of bearing pads is a synthetic rubber reinforced with carbon black particl...
Guardado en:
Autores principales: | , , |
---|---|
Lenguaje: | English |
Publicado: |
Escuela de Construcción Civil, Pontificia Universidad Católica de Chile
2020
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2020000300301 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-915X2020000300301 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-915X20200003003012021-02-16Numerical analysis of an elastomeric bearing pad by hyperelastic modelsRezende,Rivania CristinaGreco,MarceloLalo,Debora Francisco elastomeric bearing pad bridges deformation hyperelastic model finite elements Abstract Elastomeric bearing pads are responsible for transfering loads at the junction between beams and columns of bridges and viaducts, providing restrict freedom of movement in the superstructure. The elastomeric material of bearing pads is a synthetic rubber reinforced with carbon black particles and subjected to a process of vulcanization, also represented by hyperelastic material models based on strain energy density functions. The objective of the present paper is to use the finite element analysis software Abaqus® to select the most appropriate hyperelastic model, as well as its constants, applying them to a bearing pad installed in an existing viaduct, evaluating its behavior and the displacements resulting from the application of usual loads. A data fitting procedure is performed through the finite elements analysis software to obtain the Neo-Hooke, Arruda-Boyce and Yeoh model constants. The proposed methodology presents results that are coherent when compared to technical specification limits for available bearing pads products.info:eu-repo/semantics/openAccessEscuela de Construcción Civil, Pontificia Universidad Católica de ChileRevista de la construcción v.19 n.3 20202020-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2020000300301en10.7764/rdlc.19.3.301 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
elastomeric bearing pad bridges deformation hyperelastic model finite elements |
spellingShingle |
elastomeric bearing pad bridges deformation hyperelastic model finite elements Rezende,Rivania Cristina Greco,Marcelo Lalo,Debora Francisco Numerical analysis of an elastomeric bearing pad by hyperelastic models |
description |
Abstract Elastomeric bearing pads are responsible for transfering loads at the junction between beams and columns of bridges and viaducts, providing restrict freedom of movement in the superstructure. The elastomeric material of bearing pads is a synthetic rubber reinforced with carbon black particles and subjected to a process of vulcanization, also represented by hyperelastic material models based on strain energy density functions. The objective of the present paper is to use the finite element analysis software Abaqus® to select the most appropriate hyperelastic model, as well as its constants, applying them to a bearing pad installed in an existing viaduct, evaluating its behavior and the displacements resulting from the application of usual loads. A data fitting procedure is performed through the finite elements analysis software to obtain the Neo-Hooke, Arruda-Boyce and Yeoh model constants. The proposed methodology presents results that are coherent when compared to technical specification limits for available bearing pads products. |
author |
Rezende,Rivania Cristina Greco,Marcelo Lalo,Debora Francisco |
author_facet |
Rezende,Rivania Cristina Greco,Marcelo Lalo,Debora Francisco |
author_sort |
Rezende,Rivania Cristina |
title |
Numerical analysis of an elastomeric bearing pad by hyperelastic models |
title_short |
Numerical analysis of an elastomeric bearing pad by hyperelastic models |
title_full |
Numerical analysis of an elastomeric bearing pad by hyperelastic models |
title_fullStr |
Numerical analysis of an elastomeric bearing pad by hyperelastic models |
title_full_unstemmed |
Numerical analysis of an elastomeric bearing pad by hyperelastic models |
title_sort |
numerical analysis of an elastomeric bearing pad by hyperelastic models |
publisher |
Escuela de Construcción Civil, Pontificia Universidad Católica de Chile |
publishDate |
2020 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-915X2020000300301 |
work_keys_str_mv |
AT rezenderivaniacristina numericalanalysisofanelastomericbearingpadbyhyperelasticmodels AT grecomarcelo numericalanalysisofanelastomericbearingpadbyhyperelasticmodels AT lalodeborafrancisco numericalanalysisofanelastomericbearingpadbyhyperelasticmodels |
_version_ |
1714206310155681792 |