Efficacy of natural aluminosilicates in moderating drought effects on the morphological and physiological parameters of maize plants (Zea mays L.)
Natural aluminosilicates, zeolites and phyllosilicate clays are widely used in agriculture as additives to animal nutrition and as fertilizers for soil conditioning and remediation. Antitoxic nutrient (ATN) is a unique combination of naturally-occurring phyllosilicates, zeolite, bentonite and activa...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162012000100010 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Natural aluminosilicates, zeolites and phyllosilicate clays are widely used in agriculture as additives to animal nutrition and as fertilizers for soil conditioning and remediation. Antitoxic nutrient (ATN) is a unique combination of naturally-occurring phyllosilicates, zeolite, bentonite and activated charcoal (60:20:1), processed using a specific technology. In the present study, the effects of ATN treatment on the morphological and physiological parameters of maize plants under drought stress were investigated. Seeds were separated into two experimental groups: a control group (no ATN treatment) and an ATN-treated group (~0.01g ATN/seed). After 16 days of growth, these two groups of young plants were further subdivided into two subgroups: a watered group and a water-deficient group. Over the next 20 days, the following morphological and physiological parameters were measured: plant fresh weight, weights of individual vegetative plant parts, leaf area (LA), leaf water potential, proline content, nitrate reductase activity (NR; NADH:nitrate oxidoreductase; EC 1.6.6.1), glutathione S-transferase (GST; EC 2.5.1.18) activity and total nitrogen content. Results from water potential and proline content measurements suggest that ATN exhibits a protective effect on the roots and leaves of water-stressed maize plants, which is more pronounced in the latter. Interestingly, GST activity was detected in plant roots only, and was stimulated under drought conditions. |
---|