Nitrogen dynamics in a feedlot soil
The feedlot system (FL) generates a high input of sewage causing imbalances in the cycling process of nitrogen (N) as well as a potential negative impact on the environment. The objective of this study was to deepen into the dynamics of N in a FL's soil so as to provide tools to reduce its envi...
Guardado en:
Autores principales: | , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2012
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162012000300016 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-95162012000300016 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-951620120003000162014-03-10Nitrogen dynamics in a feedlot soilWyngaard,NVidela,CPicone,LZamuner,EMaceira,N feedlot system mineral nitrogen urea nitrogen urease activity The feedlot system (FL) generates a high input of sewage causing imbalances in the cycling process of nitrogen (N) as well as a potential negative impact on the environment. The objective of this study was to deepen into the dynamics of N in a FL's soil so as to provide tools to reduce its environmental impact. The study was conducted in a FL, located in Balcarce County (Buenos Aires, Argentina). Soil samples were taken between November 2006 and May 2007 in a control Pasture, in the FL-High (Upper Slope position) and FL-Low (Lower Slope position) of the FL, and in the runoff area (RA). Urease activity and concentrations of Ammonium-N, Nitrate-N and urea-N were evaluated in the soil up to 60 cm depth. Urea-N values were always low (6 mg kg-1), due to the high urease activity measured (438 mg kg-1). Ammonium-N concentration was highest in FL-Low, reaching a value of 65.5 mg kg-1 at 40-60 cm soil depth. Nitrate-N concentration was highest in FL-High for all depths, with a maximum concentration of 97.4 mg kg-1 in the 0-10 cm layer; at 40-60 cm depth, Nitrate-N concentration in FL was 31.98 mg kg-1, higher than that in Pasture (1.21 mg kg-1). There were no differences in Nitrate-N concentration between Pasture and RA; hence, it can be inferred that there was no transport of nitrate by surface water flow from the FL to RA. However, the potential for groundwater contamination via nitrate, a mobile soil constituent, should be studied.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.12 n.3 20122012-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162012000300016en10.4067/S0718-95162012005000016 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
feedlot system mineral nitrogen urea nitrogen urease activity |
spellingShingle |
feedlot system mineral nitrogen urea nitrogen urease activity Wyngaard,N Videla,C Picone,L Zamuner,E Maceira,N Nitrogen dynamics in a feedlot soil |
description |
The feedlot system (FL) generates a high input of sewage causing imbalances in the cycling process of nitrogen (N) as well as a potential negative impact on the environment. The objective of this study was to deepen into the dynamics of N in a FL's soil so as to provide tools to reduce its environmental impact. The study was conducted in a FL, located in Balcarce County (Buenos Aires, Argentina). Soil samples were taken between November 2006 and May 2007 in a control Pasture, in the FL-High (Upper Slope position) and FL-Low (Lower Slope position) of the FL, and in the runoff area (RA). Urease activity and concentrations of Ammonium-N, Nitrate-N and urea-N were evaluated in the soil up to 60 cm depth. Urea-N values were always low (6 mg kg-1), due to the high urease activity measured (438 mg kg-1). Ammonium-N concentration was highest in FL-Low, reaching a value of 65.5 mg kg-1 at 40-60 cm soil depth. Nitrate-N concentration was highest in FL-High for all depths, with a maximum concentration of 97.4 mg kg-1 in the 0-10 cm layer; at 40-60 cm depth, Nitrate-N concentration in FL was 31.98 mg kg-1, higher than that in Pasture (1.21 mg kg-1). There were no differences in Nitrate-N concentration between Pasture and RA; hence, it can be inferred that there was no transport of nitrate by surface water flow from the FL to RA. However, the potential for groundwater contamination via nitrate, a mobile soil constituent, should be studied. |
author |
Wyngaard,N Videla,C Picone,L Zamuner,E Maceira,N |
author_facet |
Wyngaard,N Videla,C Picone,L Zamuner,E Maceira,N |
author_sort |
Wyngaard,N |
title |
Nitrogen dynamics in a feedlot soil |
title_short |
Nitrogen dynamics in a feedlot soil |
title_full |
Nitrogen dynamics in a feedlot soil |
title_fullStr |
Nitrogen dynamics in a feedlot soil |
title_full_unstemmed |
Nitrogen dynamics in a feedlot soil |
title_sort |
nitrogen dynamics in a feedlot soil |
publisher |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo |
publishDate |
2012 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162012000300016 |
work_keys_str_mv |
AT wyngaardn nitrogendynamicsinafeedlotsoil AT videlac nitrogendynamicsinafeedlotsoil AT piconel nitrogendynamicsinafeedlotsoil AT zamunere nitrogendynamicsinafeedlotsoil AT maceiran nitrogendynamicsinafeedlotsoil |
_version_ |
1714206434977120256 |