Altitudinal variations in soil physico-chemical properties at cold desert high altitude

Extreme nature of climate and topographical conditions may affect soil properties at cold desert high altitude. Hence, the present investigation was undertaken to know altitudinal variations in soil physico-chemical properties at cold desert high altitude region. For this, agriculture soils were col...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Charan,G, Bharti,V K, Jadhav,S.E, Kumar,S, Acharya,S, Kumar,P, Gogoi,D, Srivastava,R.B
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2013
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000200003
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Extreme nature of climate and topographical conditions may affect soil properties at cold desert high altitude. Hence, the present investigation was undertaken to know altitudinal variations in soil physico-chemical properties at cold desert high altitude region. For this, agriculture soils were collected from different altitude viz. site I (1000011000 ft), site II (11000-12000 ft) and site III (&gt;12000 ft amsl) at Leh-Ladakh (cold desert high altitude region), India. Interestingly, sand percentage in soil was significantly high at site III and decreased gradually with the altitude. In contrast to sand level, silt concentration was high at site I and decreased significantly (p<0.05) with increasing altitude. There was no significant (p<0.05) difference in bulk density (BD) and electrical conductivity (EC) among all study sites. However, the highest pH, total dissolved solid (TDS), and CaCO3 value was recorded at site I while higher soil organic matter (SOM) was at site III. Pearson correlation coefficient analysis showed the negative correlation (p<0.01, p<0.05) of clay, silt, and pH, whereas positive correlation of sand and SOM (p<0.01) with altitude. Hence, our findings suggest the altitudinal variations in soil physico-chemical properties at cold desert high altitude.