Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China
Vegetable fields in China are characterized with intensive fertilization and cultivation, and their net effect on the global warming deserves attention. Greenhouse gas fluxes were thus measured, using a static closed chamber method, over approximately 18 months in two typical subtropical vegetable f...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000300005 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-95162013000300005 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-951620130003000052014-09-16Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern ChinaMu,Z. JHuang,A.YNi,J.PLi,J.QLiu,Y. YShi,SXie,D.THatano,R Carbon dioxide global warming potential methane nitrous oxide vegetable fields Vegetable fields in China are characterized with intensive fertilization and cultivation, and their net effect on the global warming deserves attention. Greenhouse gas fluxes were thus measured, using a static closed chamber method, over approximately 18 months in two typical subtropical vegetable fields with different soil types and contrasting soil properties. Five consecutive crops were planted in one field and four in the other. Intensive fertilization consistently stimulated soil N2O emission, while imposed complicated impact on soil respiration with CO2 emission enhanced in one field and suppressed in the other field. The fertilizer-induced N2O emission factors (EFs) varied with individual crop phases and averaged 1.4 to 3.1% across the whole sampling period for different fields. The interaction of soil temperature and moisture could explain about 58% of the seasonal variation in the EFs. All the soils under different vegetable cropping systems were net sources of atmospheric radiative forcing and the net global warming potential over the entire study period ranged from 1,786 to 3,569 g CO2 equivalence m-2 for fertilized soils with net CO2 emission contributing 53 to 67% and N2O emission occupying the remaining 33 to 47%.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.13 n.3 20132013-09-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000300005en10.4067/S0718-95162013005000045 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Carbon dioxide global warming potential methane nitrous oxide vegetable fields |
spellingShingle |
Carbon dioxide global warming potential methane nitrous oxide vegetable fields Mu,Z. J Huang,A.Y Ni,J.P Li,J.Q Liu,Y. Y Shi,S Xie,D.T Hatano,R Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
description |
Vegetable fields in China are characterized with intensive fertilization and cultivation, and their net effect on the global warming deserves attention. Greenhouse gas fluxes were thus measured, using a static closed chamber method, over approximately 18 months in two typical subtropical vegetable fields with different soil types and contrasting soil properties. Five consecutive crops were planted in one field and four in the other. Intensive fertilization consistently stimulated soil N2O emission, while imposed complicated impact on soil respiration with CO2 emission enhanced in one field and suppressed in the other field. The fertilizer-induced N2O emission factors (EFs) varied with individual crop phases and averaged 1.4 to 3.1% across the whole sampling period for different fields. The interaction of soil temperature and moisture could explain about 58% of the seasonal variation in the EFs. All the soils under different vegetable cropping systems were net sources of atmospheric radiative forcing and the net global warming potential over the entire study period ranged from 1,786 to 3,569 g CO2 equivalence m-2 for fertilized soils with net CO2 emission contributing 53 to 67% and N2O emission occupying the remaining 33 to 47%. |
author |
Mu,Z. J Huang,A.Y Ni,J.P Li,J.Q Liu,Y. Y Shi,S Xie,D.T Hatano,R |
author_facet |
Mu,Z. J Huang,A.Y Ni,J.P Li,J.Q Liu,Y. Y Shi,S Xie,D.T Hatano,R |
author_sort |
Mu,Z. J |
title |
Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
title_short |
Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
title_full |
Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
title_fullStr |
Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
title_full_unstemmed |
Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China |
title_sort |
soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern china |
publisher |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000300005 |
work_keys_str_mv |
AT muzj soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT huangay soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT nijp soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT lijq soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT liuyy soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT shis soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT xiedt soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina AT hatanor soilgreenhousegasfluxesandnetglobalwarmingpotentialfromintensivelycultivatedvegetablefieldsinsouthwesternchina |
_version_ |
1714206460112535552 |