A review of zinc nutrition and plant breeding
Plants require the proper balance of zinc (Zn) for normal growth and optimum yield. Interest in Zn has risen in the last decade because Zn deficiency stress is extensive in many areas, causing decreases in crop yields. Zn deficiency also decreases the amount of Zn in cereal grain and diminishes its...
Guardado en:
Autor principal: | |
---|---|
Lenguaje: | English |
Publicado: |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo
2013
|
Materias: | |
Acceso en línea: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000400012 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:scielo:S0718-95162013000400012 |
---|---|
record_format |
dspace |
spelling |
oai:scielo:S0718-951620130004000122014-01-29A review of zinc nutrition and plant breedingSadeghzadeh,B Zinc deficiency genotypic variation breeding molecular markers Plants require the proper balance of zinc (Zn) for normal growth and optimum yield. Interest in Zn has risen in the last decade because Zn deficiency stress is extensive in many areas, causing decreases in crop yields. Zn deficiency also decreases the amount of Zn in cereal grain and diminishes its nutritional quality. Hence, increasing the Zn content of the edible portions of crops should be considered in plant breeding. Available data indicate that Zn enrichment traits are present within the genomes of crops that could allow for substantial increases in the Zn concentration of edible parts without negatively impacting yield. Increasing the amount of Zn in food crops can improve the Zn status of people. Furthermore, the use of Zn-dense seeds results in greater seedling vigor and increased crop yields when the seeds are sown in Zn-poor soils. Progress toward developing mineral-dense seed has mainly relied upon conventional plant breeding approaches, a process that is labor-intensive and time-consuming. Hence, the identification of DNA markers that are diagnostic of Zn efficiency can accelerate the development of cultivars that can remain productive even in Zn-deficient soils. Additionally, these markers may be used to begin identifying the specific genes responsible for differences in the response of genotypes to Zn deficiency.info:eu-repo/semantics/openAccessChilean Society of Soil Science / Sociedad Chilena de la Ciencia del SueloJournal of soil science and plant nutrition v.13 n.4 20132013-12-01text/htmlhttp://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000400012en10.4067/S0718-95162013005000072 |
institution |
Scielo Chile |
collection |
Scielo Chile |
language |
English |
topic |
Zinc deficiency genotypic variation breeding molecular markers |
spellingShingle |
Zinc deficiency genotypic variation breeding molecular markers Sadeghzadeh,B A review of zinc nutrition and plant breeding |
description |
Plants require the proper balance of zinc (Zn) for normal growth and optimum yield. Interest in Zn has risen in the last decade because Zn deficiency stress is extensive in many areas, causing decreases in crop yields. Zn deficiency also decreases the amount of Zn in cereal grain and diminishes its nutritional quality. Hence, increasing the Zn content of the edible portions of crops should be considered in plant breeding. Available data indicate that Zn enrichment traits are present within the genomes of crops that could allow for substantial increases in the Zn concentration of edible parts without negatively impacting yield. Increasing the amount of Zn in food crops can improve the Zn status of people. Furthermore, the use of Zn-dense seeds results in greater seedling vigor and increased crop yields when the seeds are sown in Zn-poor soils. Progress toward developing mineral-dense seed has mainly relied upon conventional plant breeding approaches, a process that is labor-intensive and time-consuming. Hence, the identification of DNA markers that are diagnostic of Zn efficiency can accelerate the development of cultivars that can remain productive even in Zn-deficient soils. Additionally, these markers may be used to begin identifying the specific genes responsible for differences in the response of genotypes to Zn deficiency. |
author |
Sadeghzadeh,B |
author_facet |
Sadeghzadeh,B |
author_sort |
Sadeghzadeh,B |
title |
A review of zinc nutrition and plant breeding |
title_short |
A review of zinc nutrition and plant breeding |
title_full |
A review of zinc nutrition and plant breeding |
title_fullStr |
A review of zinc nutrition and plant breeding |
title_full_unstemmed |
A review of zinc nutrition and plant breeding |
title_sort |
review of zinc nutrition and plant breeding |
publisher |
Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo |
publishDate |
2013 |
url |
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162013000400012 |
work_keys_str_mv |
AT sadeghzadehb areviewofzincnutritionandplantbreeding AT sadeghzadehb reviewofzincnutritionandplantbreeding |
_version_ |
1714206464670695424 |