Seasonal dynamics of dissolved organic carbon, nitrogen and other nutrients in soil of Pinus massoniana stands after pine wilt disease disturbance

To understand changes in soil nutrients in Pinus massoniana forests affected by pine wilt disease (PWD), we examined the seasonal variation in dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and soil nutrients in Hefei, East China. The results showed a considerable decline in the po...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ge,P, Da,L.J, Wang,W.B, Xu,X.N
Lenguaje:English
Publicado: Chilean Society of Soil Science / Sociedad Chilena de la Ciencia del Suelo 2014
Materias:
Acceso en línea:http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-95162014000100006
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:To understand changes in soil nutrients in Pinus massoniana forests affected by pine wilt disease (PWD), we examined the seasonal variation in dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and soil nutrients in Hefei, East China. The results showed a considerable decline in the population density and basal area in both highly disturbed (HD) and moderately disturbed (MD) forest stands and an increase in dead pine trees, causing pronounced changes in the stand structure and soil nutrient status. The concentrations of DOC and NO3-- N were significantly (p < 0.05) higher in every season in the disturbed forests compared to the undisturbed (UD) forest stand. However, during spring and summer, the variation in the DON and NH4+-N values was significantly (p < 0.05) lower in the HD forest stand than in the UD stand; total N concentrations were higher in the disturbed forests in every season. During spring and autumn, the variation in total P values was significantly (p < 0.05) lower in the MD forest stand than in the UD stand, whereas the total P values were significantly (p < 0.05) lower in every season in the HD stand than in the UD stand. In this study, disturbance resulted in a considerable increase in DOC, N and NO3-- N when compared to the UD stand and a pronounced increase in soil nitrate in the HD stand, which may lead to soil acidification, thereby increasing the possibility of soil nutrient leaching.